簡易檢索 / 詳目顯示

研究生: 黃彥庭
Yen-Ting Huang
論文名稱: 四元鎳鋁合金鋼相變化機制的探討
The study of phase transformations of a quartenary Fe-Ni-Al-C steel
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 丘群
Chun Chiu
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 163
中文關鍵詞: 鎳鋁四元合金鋼相變化B2相L12相麻田散體相M23C6碳化物M3C碳化物spinodal相分離有序化反應
外文關鍵詞: L12 phase, ordered reaction
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對鐵-20鎳4.5鋁1.0碳(wt.%)四元合金鋼經不同熱處理後發生的相變化機制以及其組成相進行分析。1100℃進行持溫一小時後用水淬火至室溫的固溶處理後的合金鋼為單一沃斯田體相(γ)。經由500℃至1000℃的恆溫處理後,均可觀察到由沃斯田體相發生析出型相變化後均勻析出的有序富鎳鋁B2相。低於650℃的恆溫處理,在沃斯田體基地析出經由spinodal相分離和有序化相變化後的有序L12富碳相,此相的成分為(Fe,Ni)3Al。此外,900℃至700℃的恆溫處理會出現麻田散體相,其原因是周圍B2大量析出使基地內鎳含量明顯下降,麻田散體形成溫度(Ms)上升而在冷卻過程中出現;650℃與600℃出現的麻田散體相是因碳化物大量析出使基地碳含量降低,Ms溫度提高而形成。700℃以下有發現M23C6與M3C碳化物的析出。經實驗推論BCC晶粒在300℃時為貧鎳鋁BCC相(α_1)與富鎳鋁BCC相(α_2)的雙相結構,此原因為高溫BCC相(α)在300℃時經spinodal相分離成(α_1+α_2)兩相,在冷卻至室溫的過程中,兩相分別發生spinodal相分離以及有序化反應,各自形成BCC+B2雙相。


The phase transformation mechanisms in an Fe-20Ni-4.5Al-1.0C(wt.%) quartenary alloy have been studied by high temperatures solution treatment and isothermal holding at low temperatures for various holding times. The results show that the alloy has a single Face Centered Cubic (FCC) austenite phase (γ) after solution treatment. Ordered B2 phase was observed at aging temperatures between 500℃ to 1000℃. At aging temperature below 650℃, ordered (Fe,Ni)3Al L12 phase was observed. This phase was formed by transformation of γ into L12 phase via spinodal decomposition and ordering reaction. Martensite structure was observed in samples at aging temperatures ranging from 900°C to 700°C. This martensite could have formed during alloy cooling as a result of precipitation of B2 phase which led to decrease in nickel content of the surrounding matrix thereby increasing martensite start temperature (Ms). At 650°C and 600°C, martensite could have formed because of carbides, which reduced the local carbon content thereby increasing Ms. The M23C6 and M3C carbides were found to precipitate at aging temperatures below 650℃. Two body centered cubic (BCC) phases, α_(1 )and α_2 which are lean and rich in Ni-Al respectively, were found to be present in the sample aged at 300℃ for 100h by spinodal decomposition. α1 and α2 undergoing spinodal decomposition and ordering reaction upon cooling to lower temperature to form BCC and B2 phases.

摘 要 i Abstract  ii 誌 謝 iii 目 錄 iv 圖 目 錄 vi 表 目 錄 xxii 第一章 前 言 1 第二章 文獻回顧 3 2.1 擴散型相變化 3 2.2 非擴散型相變化 10 2.3 合金鋼中的碳化物 11 第三章 實驗方法 22 3.1 鎳鋁合金鋼的熔鑄與加工 22 3.2 熱處理 23 3.3 儀器說明和試片製備 25 第四章 結果與討論 40 4.1 鎳鋁合金鋼的高溫組成相 40 4.2 鎳鋁合金鋼的低溫恆溫處理組成相 42 4.3 因富鎳鋁B2相的析出所誘發的麻田散體相 54 4.4 高溫BCC相經由spinodal相分離與有序化反應所形成B2相與BCC相的組成晶粒 56 4.5 由spinodal相分離與有序化反應所形成B2相與BCC相的細小層狀組織 59 第五章 結論 130 參考文獻 135

[1] J. Chekotu, R. Groarke, K. O’Toole, D. Brabazon, Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production, Materials 12 (2019) 809.
[2] D.A. Porter, Phase Transformations in Metals and Alloys, 3th ed,, Nelson Thornes2008.
[3] J.S. Lee, W.K. Choo, The microstructure of discontinuously precipitated lamellae in an austenitic Fe-42.4 Wt Pct Ni- 4.15 Wt Pct AI-0.45 Wt Pct C alloy, Metallurgical Transactions A 24(5) (1993) 1039-1047.
[4] W.-C. Cheng, C.-Y. Cheng, C.-W. Hsu, D.E. Laughlin, Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel, Materials Science and Engineering: A 642 (2015) 128-135.
[5] 林柏佑, Fe-20Ni-4.5Al-1.0C合金鋼之相變化研究,國立臺灣科技大學,碩士論文, (2022).
[6] C. Herzig, S. Divinski, Essentials in diffusion behavior of nickel- and titanium-aluminides, Intermetallics 12(7) (2004) 993-1003.
[7] R. Oguma, S. Matsumura, T. Eguchi, Kinetics of B2-and D03-type ordering and formation of domain structures in Fe–Al alloys, Journal of Physics: Condensed Matter 20(27) (2008) 275225.
[8] S. Gao, Y. Bai, A. Shibata, N. Tsuji, Microstructures and mechanical property of a Fe-Ni-Al-C alloy containing B2 intermetallic compounds, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, p. 012020.
[9] J.-P. Couzinié, M. Heczko, V. Mazánová, O.N. Senkov, M. Ghazisaeidi, R. Banerjee, M.J. Mills, High-temperature deformation mechanisms in a BCC+ B2 refractory complex concentrated alloy, Acta Materialia 233 (2022) 117995.
[10] G. Purdy, Widmanstätten Structures, Encyclopedia of Materials: Science and Technology (2001) 9575-9578.
[11] W.-C. Cheng, H.-Y. Lin, The formation of austenite annealing twins from the ferrite phase during aging in an Fe–Mn–Al alloy, Materials Science and Engineering: A 341(1) (2003) 106-111.
[12] W.-C. Cheng, C.-F. Liu, Y.-F. Lai, The role carbon plays in the martensitic phase transformation of an Fe–Mn–Al alloy, Scripta Materialia 48(3) (2003) 295-300.
[13] C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels, Journal of Materials Processing Technology 113(1-3) (2001) 556-562.
[14] 蔣岳翔, 304不銹鋼敏化現象之再解釋,國立臺灣科技大學,碩士論文, (2023).
[15] K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Koziel, L. Gondek, The effect of temperature on the evolution of eutectic carbides and M7C3 → M23C6 carbides reaction in the rapidly solidified Fe-Cr-C alloy, Journal of Alloys and Compounds 698 (2017) 673-684.
[16] W.-C. Cheng, Y.-C. Li, The Coexistence of Two Different Pearlites, Lamellae of (Ferrite+ M 3 C), and Lamellae of (Ferrite+ M 23 C 6) in a Mn-Al Steel, Metallurgical and Materials Transactions A 43 (2012) 1817-1825.
[17] M.H. Lewis, B. Hattersley, Precipitation of M23C6 in austenitic steels, Acta Metallurgica 13(11) (1965) 1159-1168.
[18] N. Terao, B. Sasmal, Precipitation of M23C6 type carbide on twin boundaries in austenitic stainless steels, Metallography 13(2) (1980) 117-133.
[19] I.R. Shein, N.I. Medvedeva, A.L. Ivanovskii, Electronic and structural properties of cementite-type M3X (M=Fe, Co, Ni; X=C or B) by first principles calculations, Physica B: Condensed Matter 371(1) (2006) 126-132.
[20] M. Sluiter, Chapter23 ab initio steel, 2017.
[21] D.-H. Huang, G. Thomas, Metallography of bainitic transformation in silicon containing steels, Metallurgical Transactions A 8 (1977) 1661-1674.
[22] Y.A. Bagaryatskii, The probable mechanism of the martensite decomposition, H. Brutcher Technical Translations1950.
[23] G. Lopez, S. Sommadossi, W. Gust, E. Mittemeijer, P. Zieba, Phase characterization of diffusion soldered Ni/Al/Ni interconnections, Interface science 10 (2002) 13-19.
[24] L. Eleno, K. Frisk, A. Schneider, Assessment of the Fe–Ni–Al system, Intermetallics 14(10) (2006) 1276-1290.
[25] I. Vernyhora, V. Tatarenko, S. Bokoch, Thermodynamics of fcc-Ni–Fe alloys in a static applied magnetic field, International scholarly research notices 2012 (2012).
[26] W.F. Smith, Structure and properties of engineering alloys, McGraw-Hill Book Co., xiv+ 512, 23 x 16 cm, illustrated(16. 95) (1981).
[27] https://www.umat.com.tw/index.php/equipments/2.
[28] https://sppic.ntust.edu.tw/p/406-1058-74152,r1589.php?Lang=zh-tw.
[29] https://sppic.ntust.edu.tw/p/406-1058-101798,r1600.php?Lang=zh-tw.
[30] https://sppic.ntust.edu.tw/p/406-1058-51523,r1589.php?Lang=zh-tw.
[31] https://mse.ntust.edu.tw/var/file/19/1019/img/1921/239336747.pdf.
[32] H.K. Zhang, F. Long, Z. Yao, M.R. Daymond, Novel techniques of preparing TEM samples for characterization of irradiation damage, Journal of Microscopy 252(3) (2013) 251-257.
[33] 詹勝凱, 五元鐵-20鎳-15錳-3.7鋁-0.6碳合金鋼的相變化研究,國立臺灣科技大學,碩士論文, (2023).
[34] 童蔚桓, 鐵-20鎳-15錳-3.0鋁-0.6碳合金鋼的相變化研究,國立臺灣科技大學,碩士論文, (2023).
[35] 蘇奎元, 20鎳-15錳-3.7鋁-1.0碳合金鋼的相變化研究,國立臺灣科技大學,碩士論文, (2023).

無法下載圖示 全文公開日期 2025/07/19 (校內網路)
全文公開日期 2025/07/19 (校外網路)
全文公開日期 2025/07/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE