簡易檢索 / 詳目顯示

研究生: 陳玟綺
Wen-Chi Chen
論文名稱: 毫米波雷達系統應用於非接觸式量測人體心率及呼吸率之計算及驗證
A Millimeter Wave Radar System for Non-Contact Human Heart Rate and Respiration Rate Estimation and Validation
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 曹昱
Yu Tsao
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 64
中文關鍵詞: 毫米波雷達非接觸式生理資訊量測
外文關鍵詞: mmWave radar, non-contact vital signs measurement
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一毫米波雷達系統,以非接觸式的方法偵測人體震動,使用所設計之演算法計算心率以及呼吸率,並且驗證其準確性。所使用之雷達波段為60GHz至64GHz之毫米波雷達波段,應用頻率調變連續波雷達技術,對微小震動十分敏感,因此能夠收集胸腔上的微小震動。由於心跳與呼吸的振幅及頻率不同,可以使用濾波器將兩者分離,分別處理計算心率及呼吸率。心率可以藉由模擬心電圖中的PQRS波形特性,尋找R波,計算心率。驗證毫米波雷達系統演算法非常繁雜卻十分重要,最終試驗分成多個部分,最重要且收集最多資料的正躺測試,以及蓋被測試、側躺測試、翻身測試及離床測試等,結果顯示,心率平均誤差率在5\%以內,呼吸率的誤差在2RPM以內,並且不受衣物及被子影響,在不同睡姿也能得到正確數據,姿勢變換後三十秒內能重新計算出正確心率以及呼吸率。


A millimeter-wave radar system is proposed to countlessly detect human chest vibration and use the designed algorithm to calculate heart and respiration rates. The bandwidth of the radar is 60 GHz to 64 GHz millimeter -wave. Frequency modulation continuous wave radar technology is adapted, which is very sensitive to tiny vibrations to collect the small vibrations on the chest cavity. Since the amplitude and frequency of heartbeat and respiration are different, the heart rate and respiration rate can be calculated separately. Heart rate can be calculated by simulating the characteristics of the PQRS waveform in the electrocardiogram and calculating the number of R-R intervals. Verifying the millimeter-wave radar system algorithm is very complicated but very important. The final test is divided into several parts: the most necessary and most data-collected lying test and the cover test, side-lying test, rollover test, and vacancy test. The results show that The average heart rate error rate is 5\%, and the average breathing rate error is 2 RPM. Correct data can be obtained even though covered a quilt in different sleeping positions and can be recalculated within 30 seconds after the posture is changed

中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 設計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文章節規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 雷達基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 頻率調變連續波雷達. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 啁啾. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 FMCW 訊號處理. . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 物體距離、距離解析度及偵測最大距離. . . . . . . . . . . . 7 2.2.4 雷達相位. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.5 毫米波雷達偵測多人心率及呼吸率. . . . . . . . . . . . . . . 8 2.2.6 毫米波雷達心律變異性檢測. . . . . . . . . . . . . . . . . . . 8 3 提出之系統設計與測試. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 毫米波雷達系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 生理訊號量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 呼吸及心跳分離. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 呼吸率計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 雷達心率與心電圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 心率計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 驗證結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 事前校驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 距離校驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 回退功率調整及雷達外殼上蓋影響. . . . . . . . . . . . . . . 21 4.2 雷達對生理訊號準確率實驗. . . . . . . . . . . . . . . . . . . . . . . 24 4.2.1 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 使用設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.3 裝置架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 場地架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.1 平躺測試. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.2 棉被蓋過頭測試. . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.3 側躺測試. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.4 翻身測試. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.5 離床測試. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

[1] W. Chang, K.-P. Lin, and S.-Y. Tseng, “Ecg analysis based on hilbert transform descriptor,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 36–37 vol.1, 1988.
[2] L. Pecchia, P. Melillo, M. Sansone, and M. Bracale, “Heart rate variability in healthy people compared with patients with congestive heart failure,” in 2009 9th International Conference on Information Technology and Applications in Biomedicine, pp. 1–4, 2009.
[3] D. Iakovlev, S. Hu, H. Hassan, V. Dwyer, R. Ashayer-Soltani, C. Hunt, and
J. Shen, “Smart garment fabrics to enable non-contact opto-physiological monitoring,” Biosensors, vol. 8, no. 2, 2018.
[4] N. M. I. El-Amrawy Fatema, “Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial?,” Healthc Inform Res, vol. 21, no. 4, pp. 315–320, 2015.
[5] M. Chan, D. Estève, J.-Y. Fourniols, C. Escriba, and E. Campo, “Smart wearable systems: Current status and future challenges,” Artificial Intelligence in Medicine, vol. 56, no. 3, pp. 137–156, 2012.
[6] A. Ahmad, J. C. Roh, D. Wang, and A. Dubey, “Vital signs monitoring of multiple people using a fmcw millimeter-wave sensor,” in 2018 IEEE Radar Conference (RadarConf18), pp. 1450–1455, 2018.
[7] E. Al-Masri and M. Momin, “Detecting heart rate variability using millimeter-wave radar technology,” in 2018 IEEE International Conference on Big Data (Big Data), pp. 5282–5284, 2018.
[8] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with dc offset compensation in quadrature doppler radar receiver systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 1073–1079, 2007.
[9] O. B. L. A. Vergara, V. M. Lubecke, A. M. Vergara, O.-B. Lubecke, and V. M. Lubecke, “Quadrature demodulation with dc cancellation for a doppler radar motion detector,” 2007.
[10] C. Li and J. Lin, “Random body movement cancellation in doppler radar vital sign detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3143–3152, 2008.
[11] O. Boric-Lubecke, V. M. Lubecke, I. Mostafanezhad, B.-K. Park, W. Massagram, and B. Jokanović, “Doppler radar architectures and signal processing for heart rate extraction,” 2009.
[12] L. Anitori, A. de Jong, and F. Nennie, “Fmcw radar for life-sign detection,” in 2009 IEEE Radar Conference, pp. 1–6, 2009.
[13] y. Aardal, Y. Paichard, S. Brovoll, T. Berger, T. S. Lande, and S.-E. Hamran, “Physical working principles of medical radar,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 1142–1149, 2013.
[14] C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in doppler vital sign detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4678–4688, 2013.
[15] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that monitor breathing and heart rate,” in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, (New York, NY, USA), p. 837– 846, Association for Computing Machinery, 2015.
[16] S. Wang, A. Pohl, T. Jaeschke, M. Czaplik, M. Köny, S. Leonhardt, and N. Pohl, “A novel ultra-wideband 80 ghz fmcw radar system for contactless monitoring of vital signs,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4978–4981, 2015.
[17] S. El-Samad, D. Obeid, G. Zaharia, S. Sadek, and G. E. Zein, “Measurements of cardiac and cardiopulmonary activities using contactless doppler radar,” in 2015 International Conference on Advances in Biomedical Engineering (ICABME), pp. 193– 196, 2015.
[18] Z. Yang, P. H. Pathak, Y. Zeng, X. Liran, and P. Mohapatra, “Monitoring vital signs using millimeter wave,” in Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’16, (New York, NY, USA), p. 211–220, Association for Computing Machinery, 2016.
[19] S. El-Samad, D. Obeid, G. Zaharia, S. Sadek, and G. El Zein, “Remote Heartbeat Detection Using Microwave System from Four Positions of a Normally Breathing Patient,” International Journal on Communications Antenna and Propagation, vol. 6, Sept. 2016.
[20] L. Ren, L. Kong, F. Foroughian, H. Wang, P. Theilmann, and A. E. Fathy, “Comparison study of noncontact vital signs detection using a doppler stepped-frequency continuous-wave radar and camera-based imaging photoplethysmography,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, pp. 3519–3529, 2017.
[21] M. Alizadeh, G. Shaker, and S. Safavi-Naeini, “Remote heart rate sensing with mmwave radar,” in 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), pp. 1–2, 2018.
[22] H. Lee, B.-H. Kim, J.-K. Park, and J.-G. Yook, “A novel vital-sign sensing algorithm for multiple subjects based on 24-ghz fmcw doppler radar,” Remote Sensing, vol. 11, no. 10, 2019.
[23] V. L. Petrović, M. M. Janković, A. V. Lupšić, V. R. Mihajlović, and J. S. Popović- Božović, “High-accuracy real-time monitoring of heart rate variability using 24 ghz continuous-wave doppler radar,” IEEE Access, vol. 7, pp. 74721–74733, 2019.
[24] I. D. Castro, M. Mercuri, A. Patel, R. Puers, C. Van Hoof, and T. Torfs, “Physiological driver monitoring using capacitively coupled and radar sensors,” Applied Sciences, vol. 9, no. 19, 2019.
[25] Y. Wang, W. Wang, M. Zhou, A. Ren, and Z. Tian, “Remote monitoring of human vital signs based on 77-ghz mm-wave fmcw radar,” Sensors, vol. 20, no. 10, 2020.
[26] J. A. Nanzer, “A review of microwave wireless techniques for human presence detection and classification,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1780–1794, 2017.
[27] S. El-Samad, D. Obeid, G. Zaharia, S. Sadek, and G. E. Zein, “Feasibility of heartbeat detection behind a wall using cw doppler radar,” in 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP), pp. 1–4, 2016.

無法下載圖示 全文公開日期 2024/07/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2024/07/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE