簡易檢索 / 詳目顯示

研究生: 李青隆
Ching-lung Lee
論文名稱: 板狀試體脈衝激振法探討材料性質之研究
Study on Measurement of Material Properties for Platy Specimen with Impulse Excitation Technique
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 徐輝明
Hui-Mi Hsu
張建智
Jhang-Jian Chang
施正元
Jeng-Ywan Shih
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 134
中文關鍵詞: 脈衝激振法共振頻率動態模數數值模擬
外文關鍵詞: Impulse Excitation Technique, Resonant Frequency, Dynamic modulus, Numerical analysis
相關次數: 點閱:206下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以脈衝激振法(IET)試驗及數值模擬檢測板狀試體材料動態模數,當以鋼珠作為敲擊器敲擊試體後,造成試體振動產生時域聲波,藉由快速傅立葉轉換所得共振頻率,求得試體之材料動態模數試驗值,配合數值模擬分析結果,探討板狀試體之適用試體尺寸範圍及應用於非均質材料之可行性。
    試驗過程先以數值模擬金屬材料板狀試體隨著尺寸變化,探討共振頻率及模態改變,再以脈衝激振法檢測金屬材料,以非接觸型接收器麥克風與接觸型接收器加速規檢測九種不同尺寸板狀金屬材料動態模數,並澆置水泥砂漿試體及水泥飛灰砂漿試體,觀察其不同單位重及緻密度之水泥材料動態模數及強度成長趨勢,並以共振頻率法量測動態模數,探討脈衝激振法應用於多孔隙板狀材料可行性。
    研究結果顯示:(1)數值模擬可求得共振頻率及振型佐證試驗頻率為撓曲頻率或扭曲頻率; (2)長寬比為1:1時,數值模擬之兩種撓曲振型之動態彈性模數誤差分別為-70%及150%;(3)長寬比於2:1~4:3時,數值模擬之動態彈性模數誤差小於1%;(4)長寬比為1:1時,脈衝激振法試驗動態彈性模數誤差高達60%,結果顯示脈衝激振法並不適用於方板試體;(5)長寬比為2:1時,厚度為0.3、0.4、0.5增加,脈衝激振法試驗動態彈性模數誤差值分別為0.8%、1.2%、1.5%,結果顯示脈衝激振或法試用於厚度小之板狀試體;(6)由麥克風加速規試驗求得動態彈性模數及動態剪力模數值相差小於1%,結果顯示兩種接收器均能求得材料動態模數;(7)試驗齡期28天時,水泥砂漿及水泥飛灰砂漿以脈衝激振法及共振頻率法求得動態彈性模數及動態剪力模數相差小於1%,試驗結果顯示脈衝激振法可應用於非均質水泥質材料。


    This study used the Impulse Excitation Technique (IET) and numerical analysis to explore the dynamic moduli of platy specimens. When the specimens was hit by the impactor of steel ball, the resulting vibration produced the time-domain sound wave and the resonant frequencies were obtained by the Fast Fourier Transform (FFT) to calculate the experimental values of dynamic modulus Together with the results from numerical simulation, the appropriate dimension of platy specimen for testing and the feasibility of application to the heterogeneous material were addressed.
    The experimental procedures started with numerical analysis of metal material with different aspect ratios to study the changes of resonance frequency and mode shape, then the IET method was used to test the dynamic modulus with non-contact receiver of microphone and contact receivers of accelerometer to detect nine kinds of different dimensions of metal material. Then both the cement mortar and fly ash cement mortar specimens were made to investigate the evolution of dynamic modulus using resonance frequency method, strength development and variations of unit weight. Afterward, the feasibility of application of the IET technique to the porous platy material.
    The research results show that:(1) Numerical analysis can obtain the resonance frequency and mode shape to justify the frequency from the experimental results to be the flexural frequency or the torsional frequency;(2) When the aspect ratio of 1:1, the errors of dynamic elastic modulus from the numerical analysis with two mode shape of flexural frequency were -70% and 150%;(3) When the aspect ratios between 2:1 and 4:3, errors of dynamic elastic modulus from the numerical analysis were less than 1%; (4) When the aspect ratio of 1:1, the error of dynamic elastic modulus from the IET tested was higher than 60%, which shows that the IET is not suitable for square plate specimen; (5) When the aspect ratio of 2:1, the thickness ratio of 0.3、0.4、0.5, error of dynamic elastic modulus from the IET tested were 0.8%、1.2%、1.5%, respectively, which shows that the IET is suitable with thinner specimen; (6) The difference of dynamic elastic modulus and dynamic shear modulus was less than 1% when the wave results were received by either the microphone or the accelerometer; (7) Both the cement mortar specimen and cement fly ash mortar at age of 28days were tested by the IET and the resonance frequency method, the results show that the differences of both methods of dynamic elastic modulus and dynamic shear modulus were less than 1%, which shows that the IET method can be applied to nonhomogeneous materials like cement-based material.

    摘要 I 致謝 V 目錄 VI 表目錄 IX 圖目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 1 1-3 研究項目與流程 1 第二章 文獻回顧 4 2-1 音波簡介 4 2-2 應力波傳行為 5 2-3 脈衝激振法 7 2-4 共振頻率 9 2-5 常見檢測方法 9 第三章 數值模擬分析 17 3-1 概述 17 3-2 材料性質 18 3-3 網格尺寸 18 3-4 元素類型 19 3-5 線性動態分析 21 3-6 頻率與模態關係 22 3-7 分析步驟 23 第四章 實驗計畫 30 4-1 試驗內容 30 4-2 試驗材料 30 4-3 試驗變數 31 4-4 飛灰填充比例 32 4-5 養護方式 32 4-6 試驗儀器與設備 32 4-7 分析軟體 35 4-8 試驗方法 36 第五章 試驗結果與討論 58 5-1數值模擬結果 58 5-1-1網格尺寸 58 5-1-2頻率與模態 59 5-1-3動態彈性模數 60 5-1-4動態剪力模數 60 5-1-5卜松比 61 5-2金屬材料試驗結果 61 5-2-1敲擊位置與接收位置 61 5-2-2動態彈性模數 62 5-2-3動態剪力模數 63 5-2-4卜松比 64 5-3水泥砂漿試驗 64 5-3-1抗壓強度 64 5-3-2超音波波速 65 5-3-3動態彈性模數 66 5-3-4動態剪力模數 67 5-3-5卜松比 68 第六章 結論與建議 128 6-1 結論 128 6-1-1 數值模擬 128 6-1-2 金屬材料 129 6-1-3 水泥砂漿材料 130 6-2 建議 130 參考文獻 132

    1. 林莉、李喜孟,超聲波頻譜分析技術及其應用,機械工業出版社,2009.
    2. 陳永增、鄧惠源,非破壞檢測,第四版,全華圖書出版,2011.
    3. Achenbach, J., “Wave Propagation on Elastic Solids,” The Netherlands: North-Holland Publishing Company, 1973.
    4. Krautkrämer, J. and H. Krautkrämer, “Ultrasonic Testing of Materials, 4th revised Edition,” Berlin, Germany, 1990.
    5. Neville, A. M., “Properties of Concrete, 4th edition,” Longman Group, Limited, Essex, U.K., 1995.
    6. Bungey, J. H. and S. G. Millard, “Testing of Concrete in Structures, 3rd edition,” U.K.: Blackie Academic and Professional, pp. 47-74, 1996.
    7. 甘嘉偉,「超音波檢測技術評估水泥漿體之凝結特性」,碩士論文,國立臺灣科技大學營建工程系,2009.
    8. Bronisław P., Paulina W., Barbara L., Emilia P., JacekPodwórnya, "Impulse Excitation Technique IET as a non-destructive method for determining changes during the gelcasting process, Ceramics International, 2016.
    9. Leandro, I. R., Javier E., Gustavo S., Nicolás B., “Error analysis of the impulse excitation of vibration measurement of acoustic velocities in steel samples”, Physics Procedia, 2010.
    10. T.S. Chang, C.Y. Liu, and S.L. Chang, “Application Development of Dynamic Plunking Technique as Non-destructive Test for Construction Material Quality Inspection”, International Journal of Applied Science and Engineering, 2012.
    11. Aude H., Andreas R., Andreas M., "Young’s modulus of ceramic particle reinforced aluminum: Measurement by the Impulse Excitation Technique and confrontation with analytical models", Composites: Part A, 2009
    12. 謝正輝,「入射波對具有導音管電容式麥克風之分析」,逢甲大學電聲碩士學位學程碩士論文,2010.
    13. 張志宏,「應用加速規、麥克風和高速攝影機量測機械系統訊號之振動頻譜分析」,國立成功大學航空太空工程學系碩士論文,2010.
    14. A. Chu, “Choosing the right type of accelerometers”,Application Notes, Measurement Specialties Inc., 2012.
    15. Timoshenko SP, Young DH, Weaver W., "Vibration problems in engineering”, Wiley, 1974.
    16. Aude H., Andreas R., Andreas M., "Young’s modulus of ceramic particle reinforced aluminium: Measurement by the Impulse Excitation Technique and confrontation with analytical models", Composites: Part A, 2009.
    17. Prüfung von Beton. Empfehlungen und Hinweise als Ergänzung zu DIN 1048.Berlin: Deutscher Ausschuss für Stahlbeton, 1991.
    18. Oliver B., Isabelle D., Stephen H., Fabien J., "Fundamentals, Implementation, and Application", Resonant MEMS, 2015.
    19. Spinner S, Tefft WE., "A method for determining mechanical resonance frequencies and for calculating elastic moduli from these frequencies", ASTM, 1961.
    20. R. ZHANG, L.D. OLSON, and A. SEIBI, A. HELAL, A.KHALIL, M. RAHIM, "Improved Impact-Echo Approach for Non-Destructive Testing and Evaluation", ADVANCES in SENSORS, SIGNALS and MATERIALS, 2010.
    21. 王金圳,「以敲擊回音法檢測細長與標準圓柱及混凝土板之材料性質」,國立台灣科技大學營建工程系博士論文,2012.
    22. Shu-Ken Lin, Yiching Lin, Keng-Tsang Hsu, Tsong Yen, "Use of the normalized impact-echo spectrum to monitor the setting process of mortar", NDT&E International, 2010.
    23. Abaqus/Standard Version 6.13, User’s Manual, Theory Manual and Keywords Manual, Dassault Systemes Simulia Corp., 2013.
    24. F.D.Denia, E.M.Sánchez-Orgaz, J.Martínez-Casas, R.Kirby bFinite, “Finite element based acoustic analysis of dissipative silencers with high temperature and thermal-induced heterogeneity”, Finite Elements in Analysis and Design, 2015.
    25. Xiang W., Guanghua X., Qing Z., Peter W. Tse, Haihui Tan, “A quantitative method for evaluating numerical simulation accuracy of time-transient Lamb wave propagation with its applications to selecting appropriate element size and time step”, Ultrasonics, 2016.
    26. ASTM C1145-06, “Standard Terminology of Advanced Ceramics”, ASTM, 2013.
    27. R. Narayan Swamy, "Dynamic Poisson's ratio of Portland cement paste, Mortar and Concrete", CEMENT and CONCRETE RESEARCH, 1971.

    QR CODE