簡易檢索 / 詳目顯示

研究生: 陳柏佑
Po-Yu Chen
論文名稱: 農業水資源管理之賽局理論誘因機制設計
Game Theoretic Incentive Mechanism Design for Agricultural Water Resources Management
指導教授: 林希偉
Shi-Woei Lin
口試委員: 曾世賢
Shih-Hsien Tseng
謝志宏
Chih-Hung Hsieh
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 農業水資源管制單位用水單位賽局理論委託代理理論機制設計
外文關鍵詞: agriculture water resources, regulator, irrigation water user, game theory, principal-agent model, mechanism design
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 農業是人類最重要的經濟活動之一,但從事農業需要投入許多並消耗大量的資源,其中尤以水資源的消耗最為驚人,考量到氣候變遷及社會發展對水資源供需的影響,管制單位如何誘使用水單位投入節水行為是當前的重要議題。本研究著眼於農業水資源管理,考量到水資源管理者與水資源使用者之間之資訊不對稱,本研究透過賽局理論模型建模,以委託代理之管制賽局機制設計觀點為基礎,將參與者分為用水單位(農民)及管制單位(政府),考量管制單位如何提供相應的誘因令用水單位盡力節水,並在最大化社會效益的目標下建立賽局與求解均衡,並且透過比較靜態分析及數值分析探討外生變數對於均衡解的影響並推導相關的管理意涵。本研究共建構兩個賽局模型,在基礎模型中只考量到管理者的補貼及用水者節水的數量,但在擴展模型中則加入了用水者努力程度的考量,研究中並探討在加入努力因素後會對整體系統產生的影響,努力因素將使系統更符合現實情況。本研究所推導的均衡解可以提供管制單位做為決策參考,明白如何在各種情境下提供適當的補貼並減少不必要的成本,亦可以提昇水資源分配的效率與社會的總體效益。


    Agriculture, one of the most important economic activities of mankind, usually consumes a lot of water resources. In the era where climate changes and social development have led to serious impacts on the supply and demand of water resources, how the regulator design incentive schemes to induce irrigation water users to enhance water conservation behavior is an important issue. This study uses the concept of principal-agent theory to formulate and solve a game theoretic mechanism design model. In particular, participants of the game are divided into the irrigation water user (farmers) and the regulator (government), and the game is formulated in a way that the regulator provides incentives to make the irrigation water uses try their best to conserve water. We derive the equilibrium of the game under the goal of maximizing overall social benefits. Some comparative static analyses and numerical analyses have also been conducted to investigate the impact of exogenous variables on the equilibrium. The equilibrium derived by this study can be used by regulatory agencies to design appropriate subsidy polices to improve the efficiency of water resource allocation and to increase the overall benefits of society.

    目錄 摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vii 1 緒論 1 1.1研究背景與動機 1 1.2研究目的 3 1.3論文架構 4 2 文獻回顧 5 2.1農業水資源管理 5 2.2水資源管理下之賽局 7 2.3委託代理理論 8 3 基本模型 10 3.1農業水資源管理機制賽局模型 10 3.1.1機制設計賽局模型 10 3.1.2用水單位的決策問題及相關變數 12 3.1.3管制單位的決策問題及相關變數 13 3.2資訊對稱下之農業水資源管理機制模型 13 3.2.1模型建立 13 3.2.2模型求解 14 3.2.3模型結果探討 15 3.3資訊不對稱之農業水資源管理機制模型 16 3.3.1模型建立 17 3.3.2模型求解 17 3.3.3模型結果探討 20 3.4只導入單一用水單位之情形 22 3.5資訊不對稱下之農業水資源管理機制模型最佳解之比較靜態分析 24 3.5.1比較靜態分析初步設定 24 3.5.2比較靜態分析之運算 25 3.5.3 θH變化時各內生變數之影響 26 3.5.3.1 θH變化時tL**產生的變化 26 3.5.3.2 θH變化時tH**產生的變化 27 3.5.3.3 θH變化時qL**產生的變化 28 3.5.3.4 θH變化時qH**產生的變化 29 3.5.3.5比較靜態分析之結果 30 3.5.4資訊不對稱下之農業水資源管理機制模型最佳解之數值分析 30 3.5.4.1 θH變化時各內生變數之影響 32 3.5.4.2 θL變化時各內生變數之影響 34 3.5.4.3 π變化時各內生變數之影響 36 3.6連續型態農業水資源管理機制模型 38 3.6.1模型建立 39 3.6.2模型求解 39 3.6.3模型結果探討 43 4 擴展模型-考量用水單位的努力因素 44 4.1加入用水單位努力因素之模型 44 4.1.1加入努力因素後用水單位、管制單位的決策問題及相關變數 45 4.2資訊對稱下之擴展農業水資源管理機制賽局模型 46 4.2.1模型建立 46 4.2.2模型求解 47 4.2.3模型結果探討 49 4.3資訊不對稱下之擴展農業水資源管理機制賽局模型 49 4.3.1模型建立 49 4.3.2模型求解 50 4.3.3模型結果探討 53 4.4只導入單一用水單位之情形 55 4.5針對資訊不對稱下之擴展農業水資源管理的數值分析 56 4.5.1 θH變化時各內生變數之影響 57 4.5.2 θL變化時各內生變數之影響 60 4.5.3 π變化時各內生變數之影響 63 5 結論與建議 67 5.1結論 67 5.2研究限制與未來建議 68 參考文獻 69 附錄 71 圖目錄 圖3-1高節水成本用水單位之成本變化對兩用水單位補貼的影響 32 圖3-2高節水成本用水單位之成本變化對兩用水單位之節水量的影響 33 圖3-3 低節水成本用水單位之成本變化對兩用水單位補貼之影響 34 圖3-4 低節水成本用水單位之成本變化對兩用水單位之節水量的影響 35 圖3-5 用水單位之比例與兩用水單位之補貼的關係圖 36 圖3-6 用水單位之比例與兩用水單位之節水量的關係圖 37 圖4-1 高節水成本用水單位之成本變化對兩用水單位補貼之影響 58 圖4-2 高節水成本用水單位之成本變化對兩用水單位節水量之影響 59 圖4-3 高節水成本用水單位之成本變化對兩用水單位努力程度之影響 60 圖4-4 低節水成本用水單位之成本變化對兩用水單位補貼之影響 61 圖4-5 低節水成本用水單位之成本變化對兩用水單位節水量之影響 62 圖4-6 低節水成本用水單位之成本變化對兩用水單位努力程度之影響 63 圖4-7 高成本用水單位比例之變化對兩用水單位補貼之影響 64 圖4-8 高成本用水單位比例之變化對兩用水單位節水量之影響 65 圖4-9 高成本用水單位比例之變化對兩用水單位之努力程度的影響 66

    參考文獻
    Bouarfa, L., Jonker, P. P., & Dankelman, J. (2011). Discovery of high-level tasks in the operating room. Journal of biomedical informatics, 44(3), 455-462.
    Braun, D., & Guston, D. H. (2003). Principal-agent theory and research policy: An introduction. Science and Public Policy, 30(5), 302-308.
    https://doi.org/10.3152/147154303781780290
    Carraro, C., & Sgobbi, A. (2008). Modelling negotiated decision making in environmental and natural resource management: a multilateral, multiple issues, non-cooperative bargaining model with uncertainty. Automatica, 44(6), 1488-1503.
    Chang, C.-Y. (2014). Principal-agent model of risk allocation in construction contracts and its critique. Journal of Construction Engineering and Management, 140(1), 04013032.
    Chu, J., Wang, C., Chen, J., & Wang, H. (2009). Agent-based residential water use behavior simulation and policy implications: A case-study in Beijing City. Water resources management, 23(15), 3267-3295.
    Evans, R. G., Han, S., Kroeger, M., & Schneider, S. M. (1996). Precision center pivot irrigation for efficient use of water and nitrogen. Proceedings of the Third International Conference on Precision Agriculture,
    Fu, J., Zhong, P.-A., Zhu, F., Chen, J., Wu, Y.-n., & Xu, B. (2018). Water resources allocation in transboundary river based on asymmetric Nash–Harsanyi Leader–Follower game model. Water, 10(3), 270.
    Gailmard, S. (2012). Accountability and principal-agent models. Chapter prepared for the Oxford Handbook of Public Accountability.
    García-Garizábal, I., Causapé, J., & Abrahao, R. (2011). Application of the irrigation land environmental evaluation tool for flood irrigation management and evaluation of water use. Catena, 87(2), 260-267.
    Grey, D., & Sadoff, C. W. (2007). Sink or Swim? Water security for growth and development. Water Policy, 9(6), 545-571.
    https://doi.org/10.2166/wp.2007.021
    Hamdy, O., Ledbury, S., Mullooly, C., Jarema, C., Porter, S., Ovalle, K., Moussa, A., Caselli, A., Caballero, A. E., & Economides, P. A. (2003). Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes care, 26(7), 2119-2125.
    Hendricks, N. P., & Peterson, J. M. (2012). Fixed effects estimation of the intensive and extensive margins of irrigation water demand. Journal of Agricultural and Resource Economics, 1-19.
    Hodder, I. (2006). Çatalhöyük, the leopard's tale: revealing the mysteries of Turkey's ancient" town". Thames & Hudson.
    Huang, Y., Li, Y., Chen, X., & Ma, Y. (2012). Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China. Agricultural Water Management, 107, 74-85.
    Laffont, J.-J., & Tirole, J. (1986). Using cost observation to regulate firms. Journal of political Economy, 94(3, Part 1), 614-641.
    Lippai, I., & Heaney, J. P. (2000). Efficient and equitable impact fees for urban water systems. Journal of Water Resources Planning and Management, 126(2), 75-84.
    Lowdermilk, M. K. (1978). Farm irrigation constraints and farmers' responses: comprehensive field survey in Pakistan. Colorado State University. Water management technical report (USA). no. 48-A.
    Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381(3-4), 225-238.
    Madani, K. (2014). Water management in Iran: what is causing the looming crisis? Journal of environmental studies and sciences, 4(4), 315-328.
    Mehrparvar, M., Ahmadi, A., & Safavi, H. R. (2016). Social resolution of conflicts over water resources allocation in a river basin using cooperative game theory approaches: a case study. International Journal of River Basin Management, 14(1), 33-45.
    Molle, F., & Berkoff, J. (2007). Irrigation water pricing: The gap between theory and practice (Vol. 4). Cabi.
    Mollinga, P. P., Meinzen‐Dick, R. S., & Merrey, D. J. (2007). Politics, plurality and problemsheds: A strategic approach for reform of agricultural water resources management. Development Policy Review, 25(6), 699-719.
    Moore, J. C. (1994). Impact of agricultural practices on soil food web structure: theory and application. Agriculture, ecosystems & environment, 51(1-2), 239-247.
    Rogers, P., & Hall, A. W. (2003). Effective water governance (Vol. 7). Global water partnership Stockholm.
    Rosegrant, M. W., Cai, X., Cline, S. A., & Nakagawa, N. (2002). The role of rainfed agriculture in the future of global food production.
    Yuan, X.-C., Wei, Y.-M., Pan, S.-Y., & Jin, J.-L. (2014). Urban household water demand in Beijing by 2020: an agent-based model. Water resources management, 28(10), 2967-2980.

    無法下載圖示 全文公開日期 2024/08/02 (校內網路)
    全文公開日期 2024/08/02 (校外網路)
    全文公開日期 2024/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE