簡易檢索 / 詳目顯示

研究生: 陳永錄
Yung-lu Chen
論文名稱: 以微弧氧化法於AZ91D 鎂合金上鍍製矽酸鹽及鋯酸鹽氧化膜之特性分析與腐蝕行為
Corrosion behavior and properties of silicate and zirconia composite coatings on AZ91D magnesium alloy using micro-arc discharge oxidation.
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 王朝正
Chaur-Jeng Wang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 150
中文關鍵詞: 鎂合金微弧氧化腐蝕行為
外文關鍵詞: Magnesium, Microarc discharge oxidation, Corrosion behavior
相關次數: 點閱:164下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討AZ91D鎂合金微弧氧化製程在矽酸鹽類電解液系統與鋯酸鹽類電解液系統所形成之氧化膜特性,在固定頻率500 Hz及陽極400 V、陰極50 V之工作電壓下改變占空比及鍍膜工作時間,對陶瓷氧化膜微觀結構、膜厚、硬度表現、鍍膜相結構和電化學耐蝕特性進行研究。
    在矽酸鹽電解液中,發現占空比的增加使得工作電流變大,而工作電流的大小正比於氧化膜之成長速率,當占空比大於20%時,過快的成膜速率使得鍍膜表面粗糙度上升,表面孔洞變大,而過大的能量使得基材表面產生局部燒蝕的情況,因此氧化膜之相結構由穩定的MgO及Mg2SiO4逐漸變成SiO2、Mg2SiO4及MgSiO3等,從SiO2的生成可知,表面電弧溫度高過SiO2之熔點1650℃,過高之溫度使得鎂離子與電解液中矽酸根燒結產生MgSiO3二次相;而較長的工作時間使得電荷累積的程明顯變大,反應劇烈的電弧因熱應力釋放使氧化膜與基材介面處產生裂痕,此裂痕將影響氧化膜之耐蝕表現,由實驗結果顯示此系列氧化膜特性表現較佳之參數為工作時間30分鐘,占空比30%時有最佳硬度(431 HV),而工作時間10分鐘,占空比10% (4.18 x106 Ω•cm2)時耐蝕表現最佳。
    在鋯酸鹽電解液系統中,占空比對電流影響較小且無明顯規律,此系統之氧化膜成長速率較慢,有效鍍膜之占空比範圍較廣(5%~70%),當占空比超過30%以上,氧化膜表面粗糙度大幅提升;當占空比達70%時,試片表面電弧反應劇烈,氧化膜無法緻密堆積,產生局部燒蝕造成氧化膜剝落,但在較長之工作時間下,不會產生基材與氧化膜介面龜裂情形。鋯酸鹽電解液系統中形成之氧化膜相結構主要為Mg2Zr5O12及t-ZrO2所組成,當占空比達50及70%,t-ZrO2訊號明顯,並且有較明顯之MgF2訊號出現,另外高能量電弧也使鎂合金表面變成熔融狀態,進而與電解液中氟鋯酸根反應形成Mg2Zr5O12,此結構的出現可以得知,氧化鎂固溶進入氧化鋯結構中,形成類似安定化效果。由實驗結果可知此系列氧化膜特性表現較佳之參數為工作時間30分鐘,占空比為70%時獲得最佳硬度(708 HV),而工作時間30分鐘,占空比10% 的耐蝕表現最佳(1.02 x106 Ω•cm2)。
    整體來說,微弧氧化所形成之氧化膜有著良好的保護作用,在未經由浸泡前,矽酸鹽類電解液系統氧化膜耐蝕性較鋯酸鹽電解液系統佳,因為表面孔洞及裂痕其況較輕微,然而兩電解液系統氧化膜經由不同時間的浸泡後,發現氧化膜衰退速度不一,因兩系統所形成之氧化膜相結構的差異而有所改變,由實驗中得知,氧化膜中的相結構與分布情形在耐蝕表現上為一大關鍵,因其兩系統氧化膜中氧化鎂含量不同,使得矽酸鹽系統氧化膜阻抗衰退快,在浸泡20~30小時失重大幅增加,表面開始有大面積破裂面產生;而鋯酸鹽系統氧化膜以化學穩定性較高的Mg2Zr5O12及t-ZrO2為主,因此阻抗衰退速度較慢,鍍膜壽命較長。


    In this study, the characteristics of the oxide film coated on magnesium alloy AZ91D are discussed using silicate-based and zirconate-based electrolyte system. The microstructure, phase composition, oxide hardness and corrosion resistance of the MDO coatings were discussed by adjusting duty ratio and working time under constant frequency (500 Hz) and working voltage(400 V/-50 V).
    In the silicate-based electrolyte system, the higher duty ratio results in the high working current. Besides, the working current is proportional to the oxide growth rate. When the duty ratio is larger than 20%, greater oxide growth rate leads to the increasing surface roughness and enlarges the size of micro-pores. Exaggeration energy leads to partially ablation around the substrate surface, hence the phase structures of the oxide coating transform from MgO and Mg2SiO4 to SiO2, Mg2SiO4 and MgSiO3 alternatively in the silicate-based electrolyte system. From the formation of SiO2 revealed that the local micro-arc temperature was almost up to 1650℃, and so did the existence of MgSiO3.It is also found that the severe level of electric charge accumulation deteriorated the coatings during a long anodic working time. Due to release of thermal stress, the cracks form on the coating surface which has a great influence on mechanical properties and corrosion behavior. In summary, the best parameters for the oxide with optimum mechanical properties are 30% and 30 minutes(431 HV), and the most anti-corrosive one is 10% and 10 minutes (4.18 x106 Ω•cm2) in the silicate-based electrolyte system.
    On the other hand, the zirconate-based electrolyte system seldom exhibit linear regular relationship between duty ratio and working current. The growth rate of oxide coating is much slower compared to that in silicate-based electrolyte system. However, the operation range for MDO process using zirconate-based electrolyte is wide (5%~70%). Larger duty ratio results in cracks and roughness on surface. When the duty ratio is up to 70%, the coating can’t accumulate densely owing to the vigorous arc, but the oxide doesn’t strip from substrate. According to XRD pattern, the main phases in the coating are Mg2Zr5O12 and t-ZrO2 for MDO specimens in the zirconate-based electrolyte system. The intensity of t-ZrO2 and MgF2 becomes obvious at larger duty ratio(70%). Besides, the existence of Mg2Zr5O12 represents that MgO solutes into ZrO2 and stabilizes it. To sum up, the best parameters for the oxide with optimum mechanical properties are 70% and 30 minutes(708 HV), and the most anti-corrosive one is 10% and 30 minutes (1.02 x106 Ω•cm2) in the zirconate-based electrolyte system.
    Electrochemical corrosion tests indicate that the phase contents of MDO coating has a significant effect on the degradation process of coated magnesium alloy in the 3.5 wt% NaCl corrosive environment. The MDO coating in the silicate-based electrolyte system composed of MgO suffered from pitting corrosion in the twenty hours immersion test, whereas the MDO coating with ZrO2 compounds shows a much superior stability during the corrosion tests and provides an efficient corrosion protection for long period of time.

    中文摘要 I ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 前言 1 第二章 研究背景與文獻回顧 3 2.1 鎂合金簡介 3 2.1.1 鎂合金的發展與特性 3 2.1.2 鎂合金的分類與命名 6 2.1.3 鎂合金的腐蝕行為 10 2.1.4 鎂合金的腐蝕機制[9] 12 2.1.5 鎂及其合金之表面耐蝕處理 20 2.2 微弧氧化法簡介 25 2.2.1 微弧氧化法之發展歷史與未來應用 25 2.2.2 微弧放電工作原理 27 2.2.3 微弧氧化之鍍層結構及性質 31 2.2.4 微弧氧化電解液之選用 33 2.2.5 微弧氧化法應用於不同基材之比較 36 2.3 以微弧氧化法在鎂合金上鍍製鋯酸氧化膜 42 2.3.1 氧化鋯結構及特性 43 2.3.2 微弧氧化電解液中添加氧化鋯顆粒 46 2.3.3 微弧氧化電解液中添加鋯酸鹽類 50 第三章 實驗方法與步驟 56 3.1 試片材料及製備 56 3.2 微弧氧化程序 58 3.2.1 實驗設備 58 3.2.2 微弧氧化實驗參數 59 3.3微弧氧化鍍膜性質分析原理 62 3.3.1 電子顯微鏡與元素能譜分析 63 3.3.2 X光繞射儀 (X-ray Diffractometer) 64 3.3.3 維氏硬度 65 3.3.4 極化曲線測試(Potentio-dynamic polarization Test) 66 3.3.5 浸泡測試(Immersion test) 69 第四章 結果與討論 70 4.1 以微弧氧化法於AZ91D鎂合金上鍍製矽酸鹽類氧化膜 70 4.1.1 矽酸鹽電解液系統鍍膜之電流影響 71 4.1.2 矽酸鹽電解液系統鍍膜之電解液性質比較 74 4.1.3 矽酸鹽電解液系統鍍膜之微觀結構分析 77 4.1.4 矽酸鹽電解液系統鍍膜之厚度分析 90 4.1.5 矽酸鹽電解液系統鍍膜之成份結構分析 92 4.1.6 矽酸鹽電解液系統鍍膜之硬度表現 94 4.1.7 矽酸鹽電解液系統鍍膜之耐蝕表現 96 4.2 以微弧氧化法於AZ91D鎂合金上鍍製鋯酸鹽類氧化膜 99 4.2.1 鋯酸鹽電解液系統鍍膜之電流影響 100 4.2.2 鋯酸鹽電解液系統鍍膜之電解液性質比較 103 4.2.3 鋯酸鹽電解液系統鍍膜之微觀結構分析 106 4.2.4 鋯酸鹽電解液系統鍍膜之厚度分析 119 4.2.5 鋯酸鹽電解液系統鍍膜之成份結構分析 121 4.2.6 鋯酸鹽電解液系統鍍膜之硬度表現 123 4.2.7 鋯酸鹽電解液系統鍍膜之耐蝕表現 125 4.3 矽酸鹽及鋯酸鹽類系統氧化膜腐蝕行為及耐蝕表現 128 4.3.1 浸泡測試 128 4.3.2 不同浸泡時間之極化曲線分析 130 4.3.3 不同時間浸泡後氧化膜之腐蝕行為分析 134 第五章 結論 141 參考文獻 143

    [1] A. L. Rudd, C. B. Breslin, F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium.” Corrosion science vol 42, pp.275-288, 2000.
    [2] Y. I. Choi, S. Salman, K. Kuroda, and M. Okido, "Synergistic corrosion protection for AZ31 Mg alloy by anodizing and stannate post-sealing treatments." Electrochimica Acta, vol. 97, pp. 313-319, 2013.
    [3] S. Ono, T. Osaka, K. Asami, N. Masuko, “Oxide Films formed on magnesium and magnesium alloys by anodizing and chemical conversion coating.” Corrosion Reviews, Vol.16, Nos.1-2, pp. 175-190, 1998.
    [4] Michael M. Avedesian and Noranda Magnesium Inc., ASM Specialty Handbook, “Magnesium and Magnesium Alloys”, Ohio: ASM International Materials Park, 1999.
    [5] Mc Intyre NS, C. Chen, “Role of impurities on Mg surfaces under ambient exposure conditions.” Corrosion Sci 40: 1679-709,1998
    [6] G. Baril, N. Pebere, “The corrosion pf pure magnesium in aerated and deaerated sodium sulphate solutions.” Corros Sci ,2001.
    [7] J. H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, “A TEM investigation of naturally formed oxide films on pure magnesium” Corrosion science, 39, 8, (1997),1397.
    [8] M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solution.” NACE, Houston, TX, USA, 1974.
    [9] G. Song, A. Atrens, “Understanding magnesium corrosion – a framework for improved alloy performance.” Adv Eng Mater, 5 , pp. 837–858 ,2003
    [10] G. Song, A. Atrens, S. St. John, J. Nairn, Y. Lang, “The anodic dissolution of magnesium chloride and sulphate solution.” Corros. Sci. 39, 855 ,1997
    [11] G. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li “The electrochemical corrosion of pure magnesium in 1 N NaCl.” Corros. Sci. 39,1981 ,1997
    [12] J. D. Hanawalt, C. E. Nelson, and J. A. Peloubet, “ Corrosion studies of magnesium and its alloys.” Transaction of AIME,147, 273–299, 1942
    [13] J. E. Hillis, R. W. Murray,“Finishing Alternatives for High Purity Magnesium Alloys.” SDCE 14th International Die Casting Congress and Exposition, Toronto ,1987
    [14] A. L. Olsen, Translation of Paper Presented at the Deutscher Verband Fur Materialforshung u. Prufung e.v. Bauteil’91, Berlin, pp. 1–21 , 1991
    [15] D. Frey, L. L. Albright, presented at The 41th World Magnesium Conf., London, UK, June ,1984.
    [16] G. Song, A. Atrens, “Corrosion Mechanisms of Magnesium Alloys.” Adv. Eng. Mater. vol. 1, no. 1, pp. 11–33,1999
    [17] O. Lunder, K. Nisancioglu, R. S. Hanses, SAE Technical Paper Series, No. 930755 ,1993
    [18] N. Pebere, C. Riera and F. Dabosi, “Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy.” Electrochimica Acta, Vol. 35, p.555, 1990.
    [19] S. K. Das and L. A. Davis, “High performance aerospace alloys via rapid solidification processing.” Mater. Sci. Eng. , Vol.98, p.1, 1988.
    [20] G. Song, A. Atrens, X. Wu, B. Zhang, “Corrosion behavior of AZ21, AZ51 and AZ91 in sodium chloride.” Corrosion science, 40, 10, (1998), 1769.
    [21] G. Song, A. Atrens, M. Dargusch, “Influence of microstructure on the corrosion of die-cast AZ91D.” Corrosion science, 41, 249,1999
    [22] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, “Corrosion rate of magnesium and its alloys in buffered chloride solutions.” Corrosion science, 44, 603 , 2000
    [23] G. L. Makar, J. Kruger, “Corrosion studies of rapidly solidified magnesium alloys.” Journal of electrochemical society, 137, 2, 414 , 1990
    [24] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz, “Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys.” Corrosion science, 44, (2002), 2737.
    [25] G. Garces, M. C. Cristina, M. Torralba, P. Adeve, “Texture of magnesium alloy films growth by physical vapour deposition (PVD).” Journal of alloys and compounds, 309, 229, 2000
    [26] S. Fukumoto, K. Sugahara, A. Yamamoto, H. Tsubakino, “Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium.”,Materials transactions, 44, 4, 518, 2003
    [27] K. T. Rie, J. Whole, “Plasma-CVD of TiCN and ZrCN films n light metals.”, Surface and coatings technology, 112, 226, 1999
    [28] C. Sella, J. Lecoeur, Y. Sampeur, P. Catania, “ Corrosion resistance of amorphous hydrogenated SiC and diamond-like coatings deposited by rf plasma-enhanced chemical vapor deposition.” Surface and coatings technology, 287, 1993
    [29] J. D. Majumdar, B. R. Chandra, B. L. Mordike, R. Galun, I. Manna, “Laser surface engineering of a magnesium alloy with Al+Al2O3.”, Surface and coatings technology, 179, 297, 2004
    [30] T. M. Yue, A. H. Wang, H. C. Man, “Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding.”, Scripta materialia, 40, 3, 303, 1999
    [31] U. Kutschera, R. Galun, “Wear behavior of laser surface treated magnesium alloys.” Metals and Materials society, 330, 2000
    [32] H. Huo, Y. Li, F. Wang, “Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer.” Corrosion science, 46 1467–1477, 2004
    [33] F. Hollstein, R. Eiedemann, J. Scholz, “Characteristics of PVD-coatings on AZ31hp magnesium alloys.” Surface and Coating Technology 162, 261–268, 2003
    [34] A. L. Rudd, C. B. Breslin, F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium.”, Corrosion science, 42, 275, 2000
    [35] L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, S. Maximovitch, “Phosphate on magnesium alloy AM60 pare 2: electrochemical behavior in borate buffer solution.” Surface and coatings technology, 192, 239, 2005
    [36] L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, S. Maximovitch, “Phosphate on magnesium alloy AM60 pare 1: study of the formation and the growth of zinc phosphate films.” Surface and coatings technology, 185, 58, 2004
    [37] S. Ono, K. Asami, N. Masuko, “Mechanism of chemical conversion coating film growth on magnesium ad magnesium alloy.” Materials transactions, 42, 7, 1225 , 2001
    [38] K. Huber, “Anodic formation of coatings on magnesium, zinc, and cadmium.” Journal of elrctrochemical society, 100, 8, 376, 1953
    [39] O. Khaselev, J. Yahalom, “The anodic behavior of binary Mg-Al alloys in KOH-Aluminate solution.” Corrosion science, 40, 7, 1149, 1998
    [40] O. Khaselev, J. Yahalom, “Constant voltage anodizing of Mg-Al alloys in KOH-Al(OH)3 solutions.” Journal of electrochemical society, 145, 1, 190, 1998
    [41] 周偉萍, 利用微弧氧化技術在鎂合金表面製備黑色氧化膜之研究, 2012
    [42] 徐柏榮, 利用雙極脈衝電源微弧氧化法探討佔空比和頻率對7075-T6 鋁合金表面膜層之影響, 2009
    [43] G.V. Markova, “Internal friction during martensitic transformation in high manganese Mn–Cu alloys.” Materials Science and Engineering,370, 473-476, 2004 .
    [44] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey,“Plasma electrolysis for surface engineering.”Surface and Coatings Technology, 122 73-93, 1999
    [45] G. L. Yang, L. Xianyi, Y. Bai, H. F. Cui, Z. S. Jin, “The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating.” Journal of Alloys and Compounds. 345,196-200, 2002
    [46] L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A.Leyland, A. Matthews, “Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions.” Electrochimica Acta 49,2085–2095, 2004
    [47] A. L. Yerokhin, A. Shatrov, V. Samsonov, P Shashdov, A. Pilkington, A. Leyland, A. Matthews, “Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process.” Surface and Coatings Technology.199,150-157 ,2005
    [48] A. L. Yerokhin, V. V. Lyubimov, R.V. Ashitkov, “Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys.” Ceramics International, 28,1-6,1996
    [49] R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, A. Matthews, “Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current.” Surface and Coatings Technology, 200, 1580-1586, 2005
    [50] J. R. Morlidge, P. Skeldon, G. E. Thompson, H. Habazaki, K. Shimizu, G.C. Wood, “Gel formation and the efficiency of anodic film growth on aluminium.” Electrochim. Acta 44, 2423, 1999
    [51] H. Y. Zheng, Y. K. Wang, B. S. Li, G. R. Han, “The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy.” Materials Letters 59,139-142, 2005
    [52] G. Sundararajan and L. Rama Krishna,“Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology.”Surface and Coatings Technology, 167 ,269-277,2003
    [53] 劉榮明, 郭鋒, 張妍, 李鵬飛, 內蒙古工業大學學報, 26,101-104, 2007
    [54] W. Xue, Z. Deng, R. Chen and T. Zhang, “Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy.” Thin Solid Films, 372, 114-117, 2000.
    [55] W. Xue , C. Wang ,Y. Li, “Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminum alloy substrate.” Physics Condensed Matter , 14 ,10947-10952, 2002.
    [56] Y. Shi, X. Zhang, F. Yan ,G. Xie, “Hard coatings on aluminum alloy surfaces produced using microplasma oxidation.” Materials Science and Technology, 20,673-675, 2004.
    [57] G. Weichao, S. Dejiu, “Deposition of duplex Al2O3/ aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation.” Applied Surface Science ,252, 2927-2932,2006.
    [58] S. Xin, L. Song, R. Zhao, X. Hu, “Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process.” Thin Solid Films, 515, 326-332,2005.
    [59] 盛磊,熊仁章,楊生榮,余來貴「添加劑對鋁合金微弧氧化陶磁塗層結構和耐磨性能的影響」,兵器材料科學與工程,第17-18頁, 2002。
    [60] T. Wei, F. Yan, J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy.” J Alloys Compd 389:169-176, 2004
    [61] Y. Ren, X. D. Liu, D. W. Ao, K. Lu, G. D. Che, "The Effects of Content of Zr(NO3)4 on Formation and Characteristics of Micro-arc Oxidation Coatings Formed on ZAlSi12Cu2Mg1 Surface," Third International Conference on Measuring Technology and Mechatronics Automation, 3, 798-802, 2011
    [62] A. L. Yerokhinb, X. Nie, A. Leyland and A. Matthews, “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy.” Surface and Coating Technology, 130, 195-206, 2000.
    [63] G. H. Lv , H. Chen, “Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy.” Current Applied Physics, 9 , pp.126–130, 2009.
    [64] H. Duan, C. Yan and F. Wang, “Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D.” Electrochimica Acta, 52, 3785-3793, 2007.
    [65] Y. K. Pan, C. Z. Chen, D. G. Wang, X. Yu and Z. Q. Lin, “Influence of additives on microstructure and property of microarc oxidized Mg–Si–O coatings.” Ceramics International, 38, 5527-5533, 2012.
    [66] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon ,G. E. Thompson, “Characterization of AC PEO coatings on magnesium alloys.” Surface and Coating Technology, 203, 2207-2220, 2009.
    [68] Y. Yan, Y. Han and J. Huang, “Formation of Al2O3–ZrO2 composite coating on zirconium by micro-arc oxidation.” Scripta Materialia, 59, 203-206, 2008.
    [68] W. Xue, Q. Zhu, Q. Jin and M. Hua, “Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte.” Materials Chemistry and Physics, 120, 656-660, 2010.
    [69] K. Nishizawa, T. Miki, H. Fukaya, Y. Masuda, K. Suzuki, K. Kato, “Surface morphology control of zirconia thin films prepared using novel photochromic molecules.” Thin Solid Films, 516,2635–2638, 2008
    [70] T. Tsai, S. A. Barnett, “Bias Sputter Deposition of Dense Yttria‐Stabilized Zirconia Films on Porous Substrates.” Journal of Electrochemical Society, 142 , 3084–3087,1995
    [71] D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco, “Mechanical and thermophysical properties of thick PSYZ thermal barrier coatings: correlation with microstructure and spraying parameters.” Surface and Coating Technology,108-109,99-106, 1998
    [72] A. P. Caricato, A. D. Cristoforo, M. Fernandez, G. Leggieri, A. Luches, G. Majni, M. Martino, P. Mengucci, “Pulsed excimer laser ablation deposition of YSZ and TiN/YSZ thin films on Si substrates.”Applied Surface Science 208–209 ,615–619,2003
    [73] G. Carta, N.E. Habra, G. Rossetto, P. Zanella, M. Casarin, D. Barreca, C. Maragno, E. Tondello, “MgO and CaO stabilized ZrO2 thin films obtained by Metal Organic Chemical Vapor Deposition.” Surface and Coating Technology, 201,9289–9293, 2007
    [74] Y. H. Lee, C. W. Kuo, C. J. Shih, I. M. Hung, K. Z. Fung, S. B. Wen, M. C. Wang, “Characterization on the electrophoretic deposition of the 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process.” Material Science Engineering, A 445–446 347–354, 2007
    [75] Z. P. Yao, Z. H. Jiang, X. L. Zhang, “Effect of Na2SO4 on structure and corrosion resistance of ceramics coatings containing zirconium oxide on Ti–6Al–4V alloy.” Journal of the American Ceramic Society, 89 (9) 2929–2932, 2006
    [76] Z. P. Yao, Y. L. Jiang, F. Z. Jia, Z. H. Jiang, F. P. Wang, “Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti–6Al–4V alloy.” Applied Surface Science, 254 ,4084–4091, 2008
    [77] H. Luo, Q. Cai, B. Wei, B. Yu, J. He, D. Li,“Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation”Journal of Alloys and Compounds, 474: 551−556, 2009
    [78] D. K. Smith and H. W. Newkirk,“The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2”Acta Crystallographica,18 983-991 ,1965
    [79] Y. Zhou, and T. C. Lei,“Diffusionless Cubic-to –Tetragonal Phase Transition and Microstructure Evolution in Sintered Zirconia-Yttria Ceramics,”Journal of the American Ceramic Society,74 633-640 ,1991
    [80] R. C. Garvie,“The Occurrence if Metastable Tetragonal Zirconia As a Crystallite Size Effect.”The Journal of Physical Chemistry, 69 1283-1293 ,1965.
    [81] D. J. Green, R. H. Hannink, and M. V. Swain,“Transformation Toughening of Ceramics,”CRC Press, Inc.,41, 1989.
    [82] S. C. Farmer and L. H. Schoenlein, “Precipitation of Mg2Zr5O12 in MgO Partially-Stabilized ZrO2,”Journal of the American Ceramic Society, 66, 107-9 ,1987.
    [83] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G. E. Thompson, and M. C. Merino, “AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles.” Applied Surface Science, vol. 254, no. 21, pp. 6937–6942, 2008.
    [84] R. Arrabal, E. Matykina, P. Skeldon, and G. E. Thompson, “Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation,” Journal of Materials Science, vol. 43, no. 5, pp. 1532–1538, 2008.
    [85] K. M. Lee, K. R. Shin, S. Namgung, B. Yoo, D. H. Shin, “Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation.” Surface and Coating Technology, vol. 205, p.3779-3784, 2011
    [86] H. H. Luo, Q. Z. Cai, B. K. Wei, B. Yu, H. E. Jiang, LI -jun. “Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation.” Journal of Alloys and Compounds, 474: 551−556, 2009
    [87] F. Liu, D. Y. Shan, Y. W. Song, E. H. Han, W. Ke, “Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation.” Corrosion Science, 533845–3852,2011
    [88] Y. Han, J. Song, “Novel Mg2Zr5O12/Mg2Zr5O12–ZrO2–MgF2 gradient layer coating on magnesium formed by microarc oxidation.” Journal of the American Ceramic Society, vol. 92, p.1813-1816, 2009
    [89] W. Y. Mu, Y. Han, “Study on Micro-Arc Oxidized Coatings on Magnesium in Three Different Electrolytes,” Rare Metal Materials and Engineering, 39(7),1129-1134, 2010
    [90] W. Y. Mu, Y. Han, “Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation.” Surface and Coatings Technology, 202(17): 4278−4284, 2008
    [91] J. Liang, P. Bala Srinivasan, C. Blawert and W. Dietzel, “Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation.” Corrosion Science, 51, 2483-2492, 2009.
    [92] 田福助編著,“電化學—理論與應用”,高立圖書,171-193。
    [93] J. Liang, P. Bala Srinivasan, C. Blawert, M. Stormer,W. Dietzel, “Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes.” Electrochimica Acta 54, 3842–3850 ,2009
    [94] H. P. Duan, K. Q. Duc, C. W. Yan and F. H. Wang, “Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D.” Electrochimica Acta 51, 2898–2908, 2006
    [95] J. Liang, P. Bala Srinivasan, C. Blawert and W. Dietzel, “Influence of pH on the deterioration of plasma electrolytic oxidation coated AM50 magnesium alloy in NaCl solutions.” Corrosion Science 52, 540–547, 2010

    QR CODE