簡易檢索 / 詳目顯示

研究生: 謝博仲
Po-Chung Hsieh
論文名稱: 高效率隔熱透光模組製程研發與節能效益研究
Development of manufacture process and efficiency assessment for the high efficient heat insulation see through solar module
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 陳振川
Jenn-Chuan Chern
花凱龍
Kai-Lung Hua
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 131
中文關鍵詞: 高效率隔熱透光模組節能發電增益近零能耗建築建物一體太陽光電
外文關鍵詞: High efficiency heat insulation see through modules, Energy saving, Power generation improve, Nearly Zero-Energy Buildings, Building Integrated Photovoltaics
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為比較半成品模組之八種不同加工方式之製程和其光學、熱學、發電效益之比較,使用不同玻璃、空氣層和薄膜之組合來進行比較。加工完之後再對其進行光學試驗、熱學試驗、戶外標準電力試驗、密閉試驗、耗能試驗。透過電腦軟體分析模擬兩種建築形式之發電和耗能效果最後進行經濟性評估和環境效益分析。
從研究結果可知,加工後之研發成果在隔熱和發電增益上都有顯著的提升。在熱學性質方面,遮蔽係數(S.C值)與熱傳導係數(U值)皆降低,能有效的提升阻隔輻射熱和傳導熱之效能,其中以高反射隔熱膜為夾層之玻璃最能抵抗輻射熱,有加裝空氣層之玻璃最能抵抗傳導熱。在戶外標準電力試驗方面,高效率隔熱透光模組加工後皆有顯著的增加,其中以反射玻璃為背板玻璃增加最多。從模擬結果可知高效率隔熱透光模組相較一般玻璃具有更好的隔熱性能,能有效減少屋內空調之使用,同時還能發電供應建築使用。於實際應用採光罩較適合使用6號玻璃因其建築結構較利於發電,而帷幕大樓則較適合使用5號玻璃因其結構較不適合發電較注重於隔熱性能。
薄膜型太陽能電池若從生產線研發角度來看平均每增加1%之模組發電量則需花費1400萬台幣購買機器設備和技術,本研究進需花費約1萬元進行加工就能提升約0.38%之模組發電,性價比高,非常具有未來發展性。


This study is to compare the process of eight different processing methods of semi-finished modules and their optical, thermal, and power generation benefits, using different combinations of glass, air layer and film for comparison. After cutting the semi-finished module, the wires are welded and finally glued and installed with the air layer. After processing, perform optical test, thermal test, outdoor standard electric test, airtight test, and energy consumption test. Through computer software analysis and simulation of the power generation and energy consumption effects of the two building forms, economic evaluation and environmental benefit analysis are finally carried out.
It can be seen from the research results that the research and development results after processing have significantly improved heat insulation and power generation gains. In terms of thermal properties, both the shielding coefficient (SC value) and the thermal conductivity coefficient (U value) are reduced, which can effectively improve the effectiveness of blocking radiant heat and conduction heat. Among them, the glass with high reflective insulation film as the interlayer is the most resistant to radiant heat. The glass with an air layer is the most resistant to conduction heat. In the outdoor standard power test, the high-efficiency heat-insulating and light-transmitting modules all have a significant increase after processing. Among them, the reflective glass is the most increased back glass. From the simulation results, it can be seen that the high-efficiency heat-insulating and light-transmitting module has better heat insulation performance than ordinary glass, which can effectively reduce the use of indoor air-conditioning and can also generate electricity for building use. The use of high efficiency heat insulation see through modules to replace traditional general glass can effectively reduce the electricity demand of the building and further reduce carbon emissions. For practical applications, daylighting shades are more suitable for the use of No. 6 glass because of its building structure is more conducive to power generation, while the curtain building is more suitable for use of No. 5 glass because of its structure is less suitable for power generation and pay more attention to heat insulation performance.
For thin-film solar cells from the perspective of production line research and development, for every 1% increase in module power generation, it will cost 14 million Taiwan dollars to purchase equipment and technology. This research costs about 10,000 yuan for processing, which can increase about 0.38%. The module power generation is cost-effective and very promising for future development.

摘要 I Abstract II 誌謝 IV 總目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 3 1.4 研究流程 5 第二章 文獻回顧 6 2.1 太陽能之相關應用與理論 6 2.1.1 太陽能電池 7 2.1.2 矽太陽能電池 7 2.1.3 化合物半導體太陽能電池 9 2.1.4 有機太陽能電池或染料敏化太陽能電池 10 2.2 建築環境相關理論 11 2.2.1 建築熱環境理論 11 2.2.2 建築光環境理論 13 2.2.3 環境舒適度理論 14 2.3 節能玻璃種類與理論 15 2.3.1 單層玻璃 15 2.3.2 複層玻璃 17 2.3.3 膠合玻璃 18 2.3.4 太陽能節能玻璃 19 2.4 建物一體太陽光電理論(BIPV) 21 2.4.1 建物一體太陽光電之概述 21 第三章 試驗設計與設施 23 3.1 試驗設計概要 23 3.2 材料與參數設定說明 24 3.2.1 Tandem Ag 太陽能透光模組 25 3.2.2 高反射隔熱膜(XIR膜) 26 3.2.3 半成品導線布置 27 3.2.4 膠合太陽能節能玻璃 33 3.2.5 高反射鍍膜太陽能節能玻璃 37 3.3 光學試驗 42 3.3.1 試驗目的 42 3.3.2 試驗參數 42 3.3.3 試驗設備 43 3.3.4 試驗方法 44 3.4 熱學試驗 46 3.4.1 試驗目的 46 3.4.2 試驗參數 46 3.4.3 試驗設備 47 3.4.4 試驗方法 47 3.5 戶外標準電力實驗 48 3.5.1 試驗目的 48 3.5.2 試驗參數 48 3.5.3 試驗設備 49 3.5.4 試驗方法 50 3.6 熱箱密閉實驗 51 3.6.1 試驗目的 51 3.6.2 試驗參數 53 3.6.3 試驗方法 54 3.7 發電模擬分析 55 3.7.1 模擬目的 55 3.7.2 模擬參數 55 3.7.3 模擬方法 56 3.8 耗能模擬分析 57 3.8.1 模擬目的 57 3.8.2 模擬參數 57 3.8.3 模擬方法 58 第四章 試驗結果與分析 59 4.1 光學試驗結果與分析 59 4.1.1 日光穿透率、日光反射率 61 4.1.2 可見光穿透率、可見光反射率 63 4.1.3 紫外光穿透率 65 4.2 熱學試驗結果與分析 66 4.2.1 遮蔽係數SC值、日光輻射熱取得率SHGC 69 4.2.2 總熱傳導係數U值 71 4.2.3 總熱穿透量RHG 72 4.3 戶外標準電力試驗結果與分析 73 4.4 密閉熱箱試驗結果與分析 78 4.5 發電量模擬結果與分析 84 4.6 耗能軟體模擬結果與分析 88 4.7 建築物應用設計經濟效益結果與分析 93 第五章 結論與建議 110 5.1 結論 110 5.2 建議 112 參考文獻 113

[1] EnergyTrend. (2011年11月29日). 太陽能電池發電原理. 擷取自 EnergyTrend: https://www.energytrend.com.tw/knowledge/20111129-2807.html
[2] 星陽能源. (2019). 星陽能源. 擷取自 https://star-sun.com/%E5%85%89-%E9%9B%BB-%E7%B3%BB-%E7%B5%B1%E4%BA%86%E8%A7%A3%E5%A4%AA%E9%99%BD%E8%83%BD%E7%99%BC%E9%9B%BB%E5%8E%9F%E7%90%86%E8%88%87%E8%AA%8D%E8%AD%98%E5%A4%AA%E9%99%BD%E8%83%BD%E7%B3%BB%E7%B5%B1/
[3] EnergyTrend. (2012年8月21日). 非晶矽薄膜簡介. 擷取自 EnergyTrend: https://www.energytrend.com.tw/knowledge/20120821-4890.html
[4] EnergyTrend. (2013年5月17日). 微晶矽的概念. 擷取自 EnergyTrend: https://www.energytrend.com.tw/knowledge/20130517-6084.html
[5] HallidayDavid. (2010). Principles of Physics: Volume 2.
[6] HallidayDavid. (2010). Principles of Physics: Volume 2.
[7] 維基百科. (2021年1月25日). 維基百科. 擷取自 https://zh.wikipedia.org/wiki/%E7%86%B1%E8%88%92%E9%81%A9%E6%80%A7
[8] 徐科峰. (2003). 建築環境學. 機械工業出版社.
[9] 鄭元良. (2015). 歷史建築室內溫熱環境評估之研究. 國立成功大學建築研究所
[10] 熱傳遞的三種方式. (2013年6月26日). 擷取自 https://blog.xuite.net/eco.friendly57/twblog/132620025-2-1+%E7%86%B1%E5%82%B3%E9%81%9E%E7%9A%843%E7%A8%AE%E6%96%B9%E5%BC%8F%3A+%E7%86%B1%E5%82%B3%E5%B0%8E%E3%80%81%E7%86%B1%E5%B0%8D%E6%B5%81%E3%80%81%E7%86%B1%E8%BC%BB%E5%B0%84
[11] 照明相關名詞及定義. (2011). 擷取自 鴻偉檢測有限公司: http://www.homewell.tw/classroom/evn-class/e05-03.htm
[12] 張旭, “太陽能節能玻璃與其他節能玻璃之效益研究,” 於 國立臺灣科技大學建築研究所碩士論文, 2018.
[13] 溫靖儒. (2018). 校園開放空間步行環境熱舒適性之研究. 國立政治大學地政學系.
[14] 胡皓翔. (2019). 太陽能節能玻璃屋與隔熱玻璃屋之節能與室內環境效益研究. 國立台灣科技大學建築研究所碩士論文.
[15] 吸熱玻璃. (2016年11月3日). 擷取自 每日頭條: https://kknews.cc/home/p46v8pz.html
[16] 反射玻璃. (無日期). 擷取自 台玻集團: http://www.taiwanglass.com/product_list.php?sid=196
[17] 反射玻璃. (無日期). 擷取自 冠邦玻璃: http://kp-glass.com.tw/reflective.html
[18] 低輻射玻璃. (無日期). 擷取自 台玻集團: http://www.taiwanglass.com/product_list.php?sid=197
[19] 複層玻璃結構示意圖. (無日期). 擷取自 台玻複層玻璃: https://giagia.com.tw/%E8%A4%87%E5%B1%A4%E7%8E%BB%E7%92%83insulated-glass/
[20] 雙中空懸膜節能玻璃. (無日期). 擷取自 育璽實業有限公司: http://www.yushi.com.tw/zh/products/heat-mirror.
[21] 雙中空懸膜節能玻璃. (無日期). 擷取自 育璽實業有限公司: http://www.yushi.com.tw/zh/products/heat-mirror.
[22] 膠合玻璃. (無日期). 擷取自 台玻集團: http://www.taiwanglass.com/product_list.php?sid=206
[23] 左大鈞. (無日期). 鋁窗常用的玻璃種類_膠合玻璃篇. 擷取自 膠合玻璃: https://windowmind33.pixnet.net/blog/post/189799725-%E9%8B%81%E7%AA%97%E5%B8%B8%E7%94%A8%E7%9A%84%E7%8E%BB%E7%92%83%E7%A8%AE%E9%A1%9E__%E8%86%A0%E5%90%88%E7%8E%BB%E7%92%83%E7%AF%87
[24] 葉岱怡. (2019). 單中空Low-E太陽能節能玻璃之研發與應用. 國立台灣科技大學營建工程系.
[25] 陳奕霖. (2015). 太陽能節能玻璃之研發與應用. 國立台灣科技大學建築研究所博士論文.
[26] 黃進成. (無日期). BIPV模組暨系統應用. 擷取自 金華成金屬工程有限公司: https://www.tpvia.org.tw/upload/6_%E9%87%91%E8%8F%AF%E6%88%901010417BIPV%E8%97%9D%E8%A1%93%E6%A8%A1%E7%B5%84%E6%A1%88%E4%BE%8B(1).pdf
[27] 張珮錡. (2008). 雙層化BIPV屋頂構造對室內溫熱環境與通風效益之研究. 國立雲林科技大學工程科學研究所博士論文.

無法下載圖示 全文公開日期 2024/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE