簡易檢索 / 詳目顯示

研究生: 劉貞君
Chen-Chun Liu
論文名稱: 臺灣水平向反應譜阻尼修正係數模型之發展
Empirical Ground Motion Models for Damping Modification Factors for Horizontal Response Spectra in Taiwan
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 黃尹男
Yin-Nan Huang
許丁友
Ting-Yu Hsu
林旺春
Wang-Chuen Lin
張毓文
Yu‑Wen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 234
中文關鍵詞: 阻尼修正係數阻尼比近斷層效應彈性反應譜非線性動力分析
外文關鍵詞: damping modification factor, damping ratio, near-fault effect, elastic response spectra, nonlinear dynamic analysis
相關次數: 點閱:358下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣現行建築物耐震設計規範第三章動力分析方法中,提供不同結構系統所需的設計反應譜,係採用阻尼修正係數B值轉換5%的彈性反應譜至其他阻尼比的設計反應譜,針對短週期平台段與一秒週期的阻尼修正係數B值分別為BS和B1。規範要求中,短週期平台段與一秒週期的阻尼修正係數對應單一阻尼即為一個定值,只建議在設計地震使用,並無對於最大考量地震等級有提供建議值。但在過去觀察到的地震紀錄與前人研究可得知,阻尼修正係數應是一個與週期相關的函數,尤其在長週期處。此外,近期國外的研究也指出阻尼修正係數與地震動相關的影響參數有著一定的關聯性,是與評估地震發生時的地震動大小之地震動評估模型相近,例如震矩規模、距斷層面最短距離以及工址地表面下30公尺內之土層平均剪力波速等均為影響因子。因此,本研究的目的,係利用臺灣豐富的地震資料庫,發展適用於臺灣的阻尼修正係數(Damping Modification Factors, DMF)經驗模型,探討之對象包括譜位移、譜速度及譜加速度,以提供不同結構系統在設計時,對不同阻尼比地震動反應譜之需求。本研究所發展的經驗模型,主要為阻尼比與週期之函數,並考量規模、距離、地震延時及Vs30影響因子,過程中針對19個週期及11個阻尼比進行非線性迴歸,獲得三種地震動類別的阻尼修正係數模型。最終將所發展的經驗模型與現行規範進行比較分析,嘗試探討規範所設定之阻尼修正係數對應不同地震等級之適用性。
    除此外,1999年集集地震的發生提供了大量的近斷層紀錄,也明確指出近斷層紀錄具有明顯的長週期脈衝效應。本研究除針對全部地震動紀錄在不同阻尼比的轉換上提供阻尼修正係數模型外,也針對近斷層地震動特性進行討論,藉以討論近斷層工址對於不同阻尼比設計地震反應譜之需求。本研究成果說明,僅考慮近斷層紀錄之阻尼修正係數對應於採取不分類別的地震紀錄分析的結果相近,故建議採用涵蓋近斷層紀錄的資料庫所發展之阻尼修正係數經驗模型,可應用至近斷層工址。換言之,本研究所發展的阻尼修正係數經驗模型可同時應用於一般區域與近斷層區域的工址轉換不同阻尼比反應譜之用。
    最後,雖規範所建議之阻尼修正係數在不同阻尼比上有相對應的值,其餘阻尼比則以進行線性內插求得BS與B1。將本研究所發展的經驗模型代入控制震源(規模7.0,距離10公里)之評估結果與現行規範進行比較,結果呈現規範的建議與本研究在2%到25%阻尼比的修正係數BS與B1結果是相近的。唯在小於2%阻尼比的修正係數,規範均採用2%阻尼比值,比照本研究所發展之經驗模型的評估結果是相對保守的。


    In the third chapter of the current Taiwan seismic design code for buildings, damping modification factors (i.e., B values) are provided as a denominator to calculate the elastic design basis response spectra with damping ratios other than 5%. At short periods and at one-second period, the B values are referred to as Bs and B1, respectively. Those values are originally proposed to derive the corresponding design basis response spectra rather than maximum considered ones. According to some observed earthquake records and past relevant studies, it is found that damping modification factors are greatly related to natural periods, at long periods in particular. In addition, some recent studies indicate that damping modification factors, to some extent, are relevant to some ground motion characteristics that are used in ground motion prediction equations, e.g., moment magnitude (MW), rupture distance (Rrup), averaged shear wave velocity in the upper 30 m of sites (Vs30), etc. Therefore, by means of abundant ground motion database recorded in Taiwan, this study aims to develop empirical and localized models for estimating suitable damping modification factors in terms of spectral displacement, velocity, and acceleration. The models are proposed in the form of not only damping ratios and natural periods but also MW, Rrup, duration, and Vs30. The corresponding to-be-determined coefficients are obtained through performing nonlinear regression at 19 natural periods and 11 damping ratios. Through comparing the damping modification factors obtained from the proposed models with those specified in the current design code, the applicability of the code-specified values is further examined. Moreover, the results obtained from the models determined using the entire ground motion database can satisfactorily reproduce the response spectra of several near-fault pulse-like ground motions with damping ratios different from 5%. It is further implied that the proposed model is robust sufficiently and valid for both far-field and near-fault pulse-like ground motions. With respect to a specific controlling earthquake (MW =7 and Rrup = 10 km), the response spectra with damping ratios varying from 0.5% to 30% obtained from the current design code and the proposed models are mutually compared. The results show that the damping modification factors provided in the current design code are acceptable practically when the damping ratio falls within 2% to 25%, while those may be too conservative when the damping ratio is smaller than 2%.

    摘要 i Abstract iii 誌謝辭 v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究背景與目的 1 1.2 阻尼修正係數的定義 4 1.3 研究架構 5 第二章 文獻回顧 9 2.1 國內、外建築物耐震設計規範之阻尼修正係數 9 2.1.1 臺灣建築物耐震設計規範 9 2.1.2 美國ASCE 7-16 10 2.1.3 歐洲法規Eurocode 8 10 2.2 阻尼修正係數模型文獻彙整 11 第三章 阻尼修正係數模型建立 21 3.1 臺灣地震動資料庫 21 3.2 參數敏感度分析 22 3.3 模型發展與分析流程 26 第四章 位移、速度及加速度阻尼修正係數模型 39 4.1 迴歸分析流程 39 4.2 標準差模型 41 4.3 地震延時影響討論 42 4.4 模型與實際地震、其他模型之比較 42 4.5 適用性探討 44 第五章 討論與建議 44 5.1 近斷層地震動之阻尼修正係數 77 5.2 與臺灣建築物耐震設計規範之比較 78 第六章 結論與未來展望 85 6.1 結論 85 6.2 未來展望 86 參考文獻 89 附錄一、譜位移模型殘差圖 93 附錄二、譜速度模型殘差圖 126 附錄三、譜加速度模型殘差圖 159

    【1】 內政部營建署,建築物耐震設計規範及解說,2022。
    【2】 American Society of Civil Engineers (ASCE). (2017). “ Minimum design loads and associated criteria for buildings and other structures.”ASCE/SEI 7-16, American Society of Civil Engineers, Reston, Virginia.
    【3】 American Society of Civil Engineers (ASCE). (2023). “ Minimum design loads and associated criteria for buildings and other structures. ” ASCE/SEI 7-22, American Society of Civil Engineers, Reston, Virginia.
    【4】 Newmark, N. M., and Hall, W. J. (1982). “ Earthquake Spectra and Design. ” Monograph, 541 Earthquake Engineering Research Institute, Berkeley, CA.
    【5】 Sheikh MN, Tsang H-H, Yaghmaei-Sabegh S, Anbazhagan P (2013). “ Evaluation of Damping Modification Factors for Seismic Response Spectra. ” Australian Earthquake Engineering Society 2013 Conference, November 15-17, Hobart, Tasmania.
    【6】 Bommer, J., and Mendis, R. (2005). “ Scaling of spectral displacement ordinates with damping ratios. ” Earthquake Engineering and Structural Dynamics 34, 145–165.
    【7】 M. D. Trifunac and V. W. Lee. (1989). “ Empirical models for scaling pseudo relative velocity spectra of strong earthquake accelerations in terms of magnitude, distance, site intensity and recording site conditions. ” Department of Civil Engineering, University of Southern California, University Park, Los Angeles, CA 90089-0242, USA.
    【8】 Eurocode 8 (2004). Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1: 2004. Comite Europeen de Normalisation, Brussels.
    【9】 Rezaeian, S., Bozorgnia, Y., Idriss, I. M., Campbell, K., Abrahamson, N., and Silva, W. (2012). “ Spectral Damping Scaling Factors for Shallow Crustal Earthquakes in Active Tectonic Regions. ” PEER Report 2012/102, Pacific Earthquake Engineering Research Center, Berkeley, CA.
    【10】 Akkar S. Sandikkaya M. A. and Ay B. Ö. (2014). “ Compatible ground-motion prediction equations for damping scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader European region. ” Bulletin of Earthquake Engineering 12, 517–547.
    【11】 Lin, Y. Y., and Chang, K. C. (2003). “ Study on damping reduction factor for buildings under earthquake ground motions. ” Journal of Structural Engineering, ASCE 129, 206–214.
    【12】 Bommer, J., Elnashai, A. S., and Weir, A. G. (2000). “ Compatible acceleration and displacement spectra for seismic design codes. ” in Proceedings, 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, New Zealand Society for Earthquake Engineering, Inc.,
    Wellington, New Zealand, Paper No. 207.
    【13】 Abrahamson, N. A., and Silva,W. J. (1996). Section 4: “ Spectral scaling for other damping values, in Empirical Ground Motion Models. ” Report, Brookhaven National Laboratory, Upton, NY.
    【14】 Idriss, I. M. (1993). “ Procedures for Selecting Earthquake Ground Motions at Rock Sites. ” Nat. Inst. of Stan. and Tech., Rept. NIST GCR 93–625.
    【15】 Ashour, S. A. (1987). “ Elastic Seismic Response of Buildings with Supplemental Damping. ” Ph.D.Thesis, Department of Civil Engineering, University of Michigan.
    【16】 Tolis, S. V., and Faccioli, E. (1999). “ Displacement design spectra. ” Journal of Earthquake Engineering 3, 107–125.
    【17】 Hatzigeorgiou, G. D. (2010). “ Damping modification factors for SDOF systems subjected to near-fault, far-fault and artificial earthquakes. ” Earthquake Engineering and Structural Dynamics 39, 1239–1258.
    【18】 Power M, Chiou B, Abrahamson NA, Roblee C, Bozorgnia Y, Shantz, T (2008). “ An introduction to NGA. ” Earthquake. Spectra, 24:3–21
    【19】 Ancheta T, Darragh R, Silva W, Abrahamson N, Atkinson G, Boore D, Bozorgnia Y, Campbell K, Chiou B, Graves R, Idriss IM, Stewart J, Shantz T, Youngs R (2012). “ PEER NGA-West2 Database: A database of ground motions recorded in shallow crustal earthquakes in active tectonic regimes. ” Abstract submitted to the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
    【20】 Boore DM (2010). “ Orientation-independent, non geometric-mean measures of seismic intensity from two horizontal components of motion. ” Bull. Seismo. Soc. Am., 100:1830–1835.
    【21】 Rezaeian S, Bozorgnia Y, Idriss IM, Abrahamson N, Campbell K and Silva W (2014a). “ Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: “Average” horizontal component. ” Earthquake Spectra 30(2): 939-963.
    【22】 Kempton JJ, Stewart JP (2006). “ Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. ” Earthquake Spectra, 22:985–1013.
    【23】 National Center for Research on Earthquake Engineering (NCREE) (2015).
    “ Web Page for Reevaluation of Probabilistic Seismic Hazard of Nuclear
    Facilities in Taiwan Using SSHAC Level 3 Methodology Project. ” available at http://sshac.ncree.org.tw.
    【24】 Lin P. S. and C. T. Lee (2008). “ Ground-Motion Attenuation Relationships for Subduction-Zone Earthquakes in Northeastern Taiwan. ” Bull. Seism. Soc. Am., Vol. 98, No.1, pp. 220-240.
    【25】 Chao S-H, Chiou B, Hsu C-C, Lin P-S (2020). “ A horizontal ground-motion model for crustal and subduction earthquakes in Taiwan. ” Earthquake Spectra, 36(2), 463–506.
    【26】 Somerville, P.G. (2003). “ Magnitude scaling of the near fault rupture directivity pulse. ” Physics of the Earth and Planetary Interiors, 137, 201-212
    【27】 Uniform Building Code. (1976) International Conference of Building Officials, Whittier, CA.
    【28】 Federal Emergency Management Agency (FEMA). (2000). “ Prestandard
    and commentary for the seismic rehabilitation of buildings. ” FEMA-
    356, Washington, D.C
    【29】 楊亞衡、黃尹男 (2014),摩擦單擺隔震系統受脈衝型地震作用之評估與設計,國立臺灣大學工學院土木工程學系(碩士論文)。

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2033/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE