簡易檢索 / 詳目顯示

研究生: 李易昇
Yi-Sheng Li
論文名稱: 以固態燒結法製備Ba5Nb4O15微波介電材料之特性研究
Properties of Ba5Nb4O15 microwave dielectric material by solid-state reaction
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 郭東昊
Dong-Hau Kuo
馮奎智
Kuei-Chih Feng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 微波介電品質因子晶粒異常成長
外文關鍵詞: Microwave dielectric, Quality factor, Abnormal grain growth
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的在於探討以固態燒結法製備Ba5Nb4O15微波介電材料品質因子的不穩定性,Ba5Nb4O15材料系統由於具有高品質因子(Q),高介電常數(K),和趨於零的共振頻率溫度係數(τf),而被廣泛應用於微波介電材料的研究上,但是大多數的研究都是在探討外在因素對電性的影響,很少有文章在探討燒結溫度對成分內在結構因素與電性方面的相互關係。
為了製備具有高品質因子的Ba5Nb4O15微波介電材料,本研究主要針對3 個地方做變數,影響品質因子的最大原因為材料的緻密性,一般陶瓷材料的緻密性會因為燒結溫度的提升而增加,所以第一個參數為溫度,燒結溫度分別為1190oC、1259oC、1345oC、1520oC,接著考慮到之後商業化的大量製作,所以在配比方面可能會有些許的誤差,而為了瞭解比例的偏差是否對材料的電性產生影響,所以第二個參數為Ba/Nb的莫爾比,分別為4.95:4、5:4、5.05:4,再來因為每一家粉末提供廠商來自於不同的礦產,所以造成粉末的些許不一樣,所以第三個參數為三家廠商所提供的m相Nb2O5、o相Nb2O5、m+o相Nb2O5。
本研究主要分為三部分,第一部分首先將試片以同比例做分組,之後對各個不同比例、不同相以及在不同溫層燒結溫度的燒結行為與電性做探討,由實驗發現材料燒結過程中會產生晶粒異常成長,導致緻密性變差使得品質因子降低,所以得出在1259oC燒結不產生晶粒異常成長時有較佳電性,第二部分以針對同比例不同相Nb2O5在1259oC燒結做探討,發現以o相Nb2O5為原始粉末之試片具有較佳品質因子,因為o相Nb2O5所具有的F含量較多,且因為F有助於燒結所以燒結出來的晶粒成長較良好,第三部分針對不同比例同相Nb2O5在1259oC燒結做探討,發現比例4.95燒結出來的電性較佳,綜合以上三部分得知o相Nb2O5是影響品質因子最主要原因,當以o相Nb2O5且在比例為4.95(Nb rich)時可得到一組較佳之微波介電特性,品質因子(Qf): 22370、介電常數(K) : 36.3


The purpose of this study is to investigate the instability in the solid state sintering process of Ba5Nb4O15 microwave dielectric material quality factor. Ba5Nb4O15 material systems has a high quality factor (Q), high dielectric constant (K), and low temperature coefficient at resonant frequency(τf), which is widely used in research on microwave dielectric materials. However, most papers focus on the relationships between micro-wave properties and extrinsic parameters, few published papers investigates the phe-nomena between sintering temperature and dielectric properties.
To prepare Ba5Nb4O15 microwave dielectric material with high quality factor , the study focused on three variants that influenced the quality factor.For most of the ce-ramic material system the sample gets densified with increase in sintering temperature. So, we took temperature as the first variant with temperature values 1190 oC, 1259 oC, 1345 oC, and 1520 oC. There may be a little error in aspect ratio while taking into ac-count for the commercial mass- production, so in order to realize whether the propor-tion of deviation affects the electrical properties, the second variant is the Ba/Nb molar ratio and values are 4.95: 4,5: 4,5.05: 4, The Nb2O5 powder provided by the vendor were of different phase, so the sample prepared from these powder will have different properties. Therefore, third variants is to use different phase of Nb2O5 viz. m-phase Nb2O5, o-phase Nb2O5 and (m + o) phase Nb2O5.
This study is divided into three parts, the first part is to study the relation between the sintering temperature and electrical properties of the samples group together by keeping the same molar ratio and varying the phase of the Nb2O5 starting powder. Ab-normal grain growth was observed above 1345 oC temperature, resulting into low den-sified sample and in turn reduced quality factor. Sample sintered at 1259 oC showed better electrical properties.The second part is to investigate using different phase Nb2O5 keeping the molar ratio constant and sintering at 1259 oC. Ba5Nb4O15 samples with m-phase Nb2O5 showed better electrical properties. This can be attributed to the similarity in the structure of Nb2O5 and Ba5Nb4O15 which will ease the atomic diffu-sion and form a complete crystal. The third part is to investigate the prepared samples sintered at 1259 oC using the same m-Nb2O5 powder and varying the molar ratio. Molar ratio with 4.95 showed better electrical properties. So we can know from above three parts that m-phase Nb2O5 is the main reason affecting the quality factor, when we pre-pare using m-phase Nb2O5 at molar ratio 4.95 (Nb rich), we can get better microwave dielectric properties , quality factor (Qf ): 22370, dielectric constant (K): 36.3

摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 11 1.1 背景 11 1.2 目的 12 第二章 文獻回顧與原理 13 2.1 微波介電材料的特性與發展 13 2.2 微波介電材料的原理 15 2.2.1 介電原理與性質 15 2.2.2 品質因子 19 2.2.3 共振頻率溫度係數 24 2.3 Ba5Nb4O15成分系統之晶體結構與電性質 25 2.4 微波材料量測技術 34 第三章 實驗流程與分析方法 37 3.1 起始原料 37 3.2 粉末及燒結體製備 37 3.2.1 粉末製備 37 3.2.2 燒結體製備 38 3.3 實驗儀器與規格 40 3.4 材料性質量測方法 41 3.4.1 SEM微觀分析 41 3.4.2 XRD相結構分析 41 3.4.3 密度量測 41 3.4.4 品質因子與介電常數量測 42 3.4.5 拉曼光譜分析 43 3.5 試片編號 45 第四章 結果與討論 46 4.1 材料燒結行為對微波介電性質影響 46 4.2 SEM微觀結構分析 55 4.2.1 4.95-1不同燒結溫度下之微觀結構分析 55 4.2.2 同比例4.95在燒結溫度1259 oC下之微觀分析 57 4.2.3 不同比例同Nb2O5在燒結溫度1259 oC下之微觀分析 60 4.3 X-ray繞射與拉曼光譜結構分析 63 4.3.1 4.95-1在不同燒結溫度下之拉曼光譜與XRD分析 63 4.3.2 4.95-2、4.95-3在不同燒結溫度下之拉曼光譜與XRD分析 64 4.3.3 5-1、5.05-1在不同燒結溫度下之拉曼光譜與XRD分析 67 第五章 結論 72 附錄 77

1. R. J. Cava, “Dielectric materials for applications in microwave Communication.” Journal of Materials Chemistry., 11, 54-62, 2001.
2. J. Wan, “Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization.” Journal of Electronic Science and Technology of China., 6, 342-345, 2008.
3. J. Krupka, “Extremely high-Q factor dielectric resonators for Millime-ter-wavapplications.” IEEE Transactions on Microwave theory and Techniques., 53, 702-712, 2005.
4. I. Nicolaescu, A.Ioachim, I. Toacsan, I. Radu, and G. Banciu, “High k materials used to manufacture miniaturized dielectric antennas for military applications.” Journal of Optoelectronics and Advanced Materials., 9, 3592-3597, 2007.
5. C. C. Chiang, S. F. Wang, Y. R. Wang, W. Cheng and J. Wei,“Densification and microwavedielectric properties of CaO-B2O3-SiO2 system glass-ceramics.” Ce-ramics International., 34, 599-604, 2008.
6. M. T. Sebastian and H. Jantunen,“Low loss dielectric materials for LTCC Appli-catio-ns: a review.” International Materials Reviews., 53, 57-90, 2008.
7. S. Kamba, J. Petzelt, D. Haubrich, P. Vanek, P. Kuzel, I. N. Jawahar, M. T. Sebas-tian, and P. Mohanan, “High frequency dielectric properties of A5B4O15 micro-wave ceramics,” J. Appl. Phys., 89, 3900-3906,2001.
8. I. N. Jawahar, P. Mohanan, and M. T. Sebastian, “A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B=Nb, Ta) microwave dielectric ceramic,” Materials Lett., 57, 4043-4048, 2003.
9. J. M. Osepchuk, “A History of Microwave Heating Applications.” IEEE Trans.” Microwave Theory & Tech., 9, 1200-1224, 1984.
10. R. D. Richtmyer, Dielectric Resonator. Japanese Journal of Applied Physics., 10, 391-398, 1939.
11. A. Okaya, The Rutile Microwave Resonator. Proceeding of the IRE., 48, 1921, 1960.
12. H. M. O. Bryan, J. Thomson, and J. K. Plourde, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 450-453, 1974.
13. 趙克玉, 許福永編著,“微波原理與技術”,高等敎育出版社, 2006 .
14. Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公公司,2001。
15. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975
16. 李俊遠,GPS微波介電材料與GPS天線設計概念,電子與材料雜誌,第14期。
17. 吳朗,電子陶瓷-介電陶瓷,全欣出版,中華民國83年。
18. F. Galasso and L. Katz, “Preparation and structure of Ba5Ta4O15 and related com-pounds,” Acta Cryst., 14, 647-650, 1961.
19. T. Hahn, International tables for crystallography volume A: space-group symmetry, 2nd Ed., D. Reidel publishing company, Dordrecht, 1987.
20. R. Ratheesh, H. Sreemoolanadhan, and M. T. Sebastian, “Vibrational analysis of Ba(1-x)SrxNb4O15 microwave dielectric ceramic resonators,” J. Solid State Chem., 131, 2-8, 1997.
21. J. Shannon and L. Katz, “A refinement of the structure of barium tantalum oxide, Ba5Nb4O15,” Acta Cryst., B26, 102-105, 1975.
22. Basics of Measuring the Dielectric Properties of Materials Application Note, Ag-ilent,www.agilent.com/find/materials, 2005
23. J. Baker-Jarvis, M. Janezic, B. Riddle, C. Holloway, N. Paulter and J. Blendell, “. Dielectric and Conductor-Loss Characterization and Measurements on Elec-tronicPackaging Materials,” NIST Technical Note 1520, 2001
24. 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,2003。
25. 歐建志,(Ba(1-x)Srx)5Nb4O15 陶瓷材料的結構與微波介電性質,國立成功大學資源工程研究所碩士論文,2005
26. Dong-Wan Kim, Kug Sun Hong, Chong S. Yooh, Chang Kyung Kim, “Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15-BaNb2O6 mixtures for LTCC applications,” Journal of the European Ceramic Society 23 (2003) 2597-2601
27. Hidehiko Tanaka, Hiromi Nakano, Y. Suyama, “Grain shrinkage driven by surface and grain boundary energy in Ba5Nb4O15 powder,” Acta Materialia 55 (2007) 2423-2432
28. J. Isaac, S.Solomon, M. T. Sebastian, K. A. Jose, P. Mohanas, “Dielectric proper-ties of Ba5Nb4O15 ceramic,” Subject classification 77.20 and 77.40
29. Guo-hua Chen, Bing Qi, “Barium niobate formation from mechanically activated BaCO3-Nb2O5 mixtures,” Journal of Alloys and Compounds 425 (2006) 395-398
30. Chun-Te Lee, Chien-Chih Ou, Yi-Chang Lin, Chi-Yuen Huang, Che-Yi Su, “Struc-ture and microwave dielectric property relations in (Ba(1-x)Srx)5Nb4O15 system,” Journal of the European Ceramic Society 27 (2007) 2273-2280
31. Huanfu Zhou, Hong Wang, Minghuia Zhang, Haibo Yang, “Microwave dielectric properties and compatibility with silver of low-fired Ba5Nb4O15 ceramics by BaCu(B2O5) addition” J.Mater.Res.,Vol.25,No.9,Sep 2010
32. Hao Zhuang, Zhenxing Yue, Fei Zhao, Jing Pei, Longtu Li, “Microstructure and microwave dielectric properties of Ba5Nb4O15-BaWO4 composite ceramics,” Journal of Alloys and Compounds 472 (2009) 411-415
33. Jeong-Ryeol Kim, Dong-Wan Kim, Hyun Suk Jung, Kug Sun Hong, “Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15 with ZnB2O4 glass” Journal of the European Ceramic Society 26 (2006) 2105-2109
34. Sangbaek Park, Hee Jo Song, Chan Woo Lee, Sung Won Hwang, and In Sun Cho, “Enhanced Photocatalytic Activity of Ultrathin Ba5Nb4O15 Two-Dimensional Nanosheets,” American Chemical Society Appl. Mater. Interfaces 2015, 7, 21860-21867
35. Ryoji Kodama, Yasuko Terada, Izumi Nakai, Shinichi Komaba, and Naoaki Kumagai, “Electrochemical and In Situ XAFS-XRD Investigation of Nb2O5 for Rechargeable Lithium Batteries,” Journal of the Electrochemical Society, 153 (3) A583-A588 (2006)
36. Mailadil T. Sebastian, “Dielectric materials for wireless communication,”

無法下載圖示 全文公開日期 2021/08/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE