簡易檢索 / 詳目顯示

研究生: 吳崇瑜
Chung-yu wu
論文名稱: 應用於數位家電之漸變開槽共平面波導饋入式超寬頻天線設計與分析
Design and Analysis of Tapered-slot CPW-fed Ultra-wideband Antennas for Digital Home Applications
指導教授: 蘇順豐
Shun-feng Su
口試委員: 楊成發
Chang-fa Yang
馬自莊
Tzyh-ghuang Ma
蔡超人
Chau-ren Tsai
林丁丙
Ding-bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 83
中文關鍵詞: 超寬頻天線、漸變開槽、分頻寬、最佳化
外文關鍵詞: Tapered-Slot, Fractional Bandwidth, Optimum.
相關次數: 點閱:410下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代人們希望有更好更便利的生活模式,而將無線技術應用於生活環境上,
這樣的需求與日俱增,但隨之而來的是不斷的難題浮現出來。舉例來說,一般的民眾並不會真正的關心現代科技,他們關心的事,科技帶來給他們是什麼樣的生活模式,也因為如此,數位家電成為炙手可熱的市場,伴隨而來的是科學家,工程師不斷研發智慧型家電以因應數位家電需求。然而,輕薄短小的需求使的許多挑戰與難題浮現出來。
許多技術像是Wi-Fi、藍芽等等都是因為解決數位家電的無線個人區域網路而生,當中最強勁的對手莫屬超寬頻天線 (UWB),此技術在頻寬、成本、功率消耗以及下一代消費型電子產品大小上的需求都有很好的表現,因此UWB天線的設計就變的非常重要。
本篇論文中,我們提出了漸變開槽共平面波導饋入的結構,並結合新的架構來達到體積縮小化的功能。我們做了大量參數分析及討論,以便了解參數如何影響天線效能。透過此方法,擁有分頻寬(Fractional Bandwidth)109%的微型化天線27mm乘24mm以及擁有分頻寬(Fractional Bandwidth) 127%的最佳化天線27mm乘24mm被分析及實現出來。這兩支天線在場型、體積、抑制鄰近物體效應,與主動性元件結合都有不錯的表現。


As the demand for applying wireless technologies to our environment to make it more convenient or even a better place to live is getting stronger, many difficulties is about to be on the horizon. For example, people outside the world normally don not really concern about technology that much or what are the cutting-edges nowadays in the world, but this is not the case when it comes to the technology related to their daily live or the way they live. That makes digital home applications a hot market and that also makes scientists and engineers create more intelligent appliance (AI) for digital home usage. However, those products are all getting smaller to meet the needs of consumer and hence more challenges and difficulties appear.
Several wireless technologies such as Wi-Fi, Bluetooth, etc, have been proposed for WPAN for digital home. One of them, UWB, emerges as a strong rival in wireless world since it provides a compelling solution for bandwidth, cost, power consumption, and physical size requirements of next-generation consumer electronics devices. Therefore, the antenna design for UWB radio plays the most important rule in digital home topic.
In this thesis, tapered-slot CPW-fed printed antenna is proposed with a novel structure featuring reduction of antenna size. An extensive parameter study is also conducted to get clear insight the effect of proposed structure on antenna performance and then the minimized antenna of 27mm by 24mm with fractional bandwidth 109% and optimum antenna with fractional bandwidth 127% are calculated, analyzed, and fabricated. Both of them exhibits well performance in terms of return loss, radiation pattern, size, ease of integration with active devices, and immunity to nearby objects. Those characteristics substantiate the entitlement to digital home applications.

摘要………………………………………………………………………………...….I Abstract……………………………………………………………………..……......II 致謝…………………………………………………………………………………..III Acknowledgments ………………………………………………………...…………V Contents of the Thesis ………………………………………..……………………VII List of Figures and Tables…………………………………….……….……………Ix Chapter 1 Introduction 1 1.1 Research Motivations……………………………………...1 1.2 Chapter Outlines…………………………………………...4 Chapter 2 Basic Theories 6 2.1 Broadband Basic…………………………………………...6 2.2 Traveling-Wave Antennas……………………………….....7 2.2.1 Infinite and Finite Bi-conical Antenna……………..8 2.2.2 Bow-Tie, Tapered Slot, and Vivaldi Antenna………9 2.3 Principles of Frequency-Independent Antenna…………...17 2.3.1 Spiral Antennas…………………………………...19 2.3.2 Log-Periodic Antennas……………………………22 2.4 Summary………………………………………………….25 Chapter 3 Ultra Wide-Band Exponential Tapered-Slot CPW-fed printed Bow-Tie Antenna 32 3.1 Geometry and Performance……………………………….32 3.2 Parameter Study…………………………………………..39 3.2.1 Aperture Height…………………………………..39 3.2.2 Opening Rate……………………………………..44 3.2.3 Length Parameters………………………………..46 3.3 Implementation for UWB Radios………………………...54 3.3.1 Design Example of Feasibility for Best Return Loss ……………………………………………………………54 3.3.2 Design Example of Miniaturization………………58 3.4 Summary………………………………………………….61 Chapter 4. Ultra Wide-Band Exponential Serrated Tapered-Slot CPW-fed printed Bow-Tie Antenna 62 4.1 Geometry and Performance Comparison………………....63 4.2 Parameter Discussion……………………………………..69 4.3 Implementation for UWB Radios………………………...74 4.4 Summary………………………………………………….76 Chapter 5 Conclusions 77 5.1 Summary………………………………………………….77 5.2 Future Works……………………………………………...78 References………………………………………………………… ……………….79 作者簡介…………………………………………………………………….…...….83

[1] Federal Communications Commission, First report and order, revision of part 15 of the commission’s rule regarding ultra wideband transmission systems, FCC 02-48, Apr. 22, 2002.
[2] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave, vol. 4, pp. 36-47, Jun. 2003.
[3] D. G. Leeper, “Ultrawideband – the next step in short-range wireless,” in IEEE 2003 Radio Freq. Integrated Circuits Symp. Dig., pp. 493-496, Jun. 2003.
[4] G. R. Aiello, “Challenges for ultra-wideband (UWB) CMOS integration,” in IEEE 2003 Radio Freq. Integrated Circuits Symp. Dig., pp. 497-500, Jun. 2003.
[5] B. Scheers, M. Piette and A. Vander Vorst, “The detection of AP mines using UWB GPR,” in Proc. 2nd Int. Conf. on the Detection of Abandoned Land Mines, pp. 50-54, Oct. 1998.
[6] W. F. MaNaul, J. Glabe and B. Welge, “A low profile antenna for ultra-wide band applications,” in IEEE AP-S Int. Symp. Dig., vol. 3, San Antonio, TX, pp.476-479, Jun. 2002.
[7] T.-H. Chio and D. H. Schaubert, “Parameter study and design of wide-band widescan dual-polarized stripline-fed tapered slot antenna arrays,” IEEE Trans. Antennas Progatat., vol. 48, pp. 879-886, Jun. 2000.
[8] J. Shin and D. H. Schaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,” IEEE Trans. Antennas Progatat., vol. 47, pp. 879-886, May 1999.
[9] J. D. S. Langley, P. S. Hall and P. Newham, “Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation,” Electron. Lett., vol. 29, pp. 2004-2005, Nov. 1993.
[10] V. Mikhnev and P. Vainikainen, “Wideband tapered-slot antenna with corrugated edges for GPR applications,” in Proc. 33rd European Microwave Conf., Munich, Germany, pp. 727-729, Oct. 2003.
[11] S. S. Sandler and R. W. P. King, “Compact conical antennas for wide-band coverage,” IEEE Trans. Antennas Propagat., vol. 42, pp. 436-439, Mar. 1994
[12] T. Taniguchi and T. Kobayashi, “An omnidirectional and low-VSWR antenna for ultra-wideband wireless systems,” 2002 IEEE Radio and Wireless Conf., pp. 145–148, Aug. 2002.
[13] H. G. Schantz, “UWB magnetic antennas,” in IEEE AP-S Int. Symp. Dig., vol. 3, Columbus, OH , pp. 604–607, Jun. 2003.
[14] H. G. Schantz and Mark Barnes, “The COTAB UWB magnetic slot antenna,” in IEEE AP-S Int. Symp. Dig., vol. 4, Boston, MA, pp. 104–107, Jul. 2001.
[15] A. B. Hannigan, S. R. Pencock and P. Shepherd, “Broadband opearation of tapered inset dielectric guide and bowtie slot antennas,” in Ultra-Wideband Short-Pulse Electromagnetics 5, Kluwer Academic/Plenum Publishers: 2002, New York, pp. 319-326.
[16] I. Yoon, H. Kim, K. Chang, Y. Yoon and Y. Kim, “Ultra wideband tapered slot antenna with band-stop characteristic,” in IEEE AP-S Int. Symp. Dig., vol. 2, Monterey, CA, pp. 1780-1783, Jun. 2004.
[17] W. L. Stutzman, Gary A. Thiele,“Antenna Theory and Design,” John Wiley & Sons, p165-174, p225-226, p240-p244, p250-p263, 1998.
[18] J. D. Kraus, R. J. Marhefka ,“Antennas For All Application,” McGraw-Hill Book Company, p 378-393, 2002.
[19] K. L. Wong and W. H. Hsu, “Broadband triangular microstrip antenna with U-shaped slot,”Electron. Lett., vol. 33, pp. 2085-2087, 1997.
[20] K. F. Tong, K. M. Luk, K. F. Lee, and R. Q. Lee,“A broad-band U-slot rectangular patch antenna on a microwave substrate,” IEEE Trans. On Ant. Prop., vol. AP-48, no. 6, pp. 954-960, Jun. 2000.
[21] P. J. Gibson, “The Vivaldi aerial,” in Proc. 9th European Microwave Conf., Brighton, U.K., pp. 101-105, 1979,.
[22] S. N. Prasad and S. Mahapatra, “A novel mic slot line aerial,” in Proc. 9th European Microwave Conf., Brighton, U.K., pp. 120-124, 1979.
[23] T. L. Korzeniowski, D. M. Pozar, D. H. Schaubert, and K. S. Yngvesson, “Imaging system at 94 GHz using tapered slot antenna elements,” presented at the Eighth IEEE Int. Conf. Infrared and Millimeter Waves, Miami Beach, FL, 1983.
[24] K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johannson,“Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Propgat., vol. AP-33, pp. 1392-1400, Dec. 1985.
[25] R. Janaswamy and D. H. Schaubert, “Analysis of the tapered slot antenna,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1058-1064, Sept. 1987.
[26] R. Janaswamy, D. H. Schaubert, and D. M. Pozar, “Analysis of the TEM-mode linearly tapered slot antenna,” Radio Sci., vol. 21, no. 5, pp. 797-804, Sept.-Oct. 1986.
[27] R. Janaswamy and D. H. Schaubert, “Dispersion characteristics for wide slot lines on low permittivity substrates,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 723-726, Aug. 1985.
[28] —, “Characteristic impedance of a wide slot line on low permittivity substrates,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 900-902, Aug. 1986.
[29] J. Shin and D. H. Shaubert,“A parameter study of stripline-fed Vivaldi notch-antenna arrays,”IEEE Trans. Antennas Propagat., vol. 47, no. 5, pp. 879-886, May. 1999.
[30] P. R. Acharya, H. Ekstr m, S. S. Gearhart, S. Jacobsson, J. F. Johansson, E. L. Kollberg, and G. M. Rebeiz, “Tapered slotline antennas at 802 GHz,”IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1715-1719, Oct. 1993.
[31] D. H. Schaubert,“Wide-band phased arrays of Vivaldi notch antennas,”in Proc. 10th Inst. Elect. Eng. Int. Conf. Antennas Propagat., Edinburgh, U.K., pp. 12-16, Apr. 1997.
[32] B. Stockbroeckx and A. V. Vorst,“Copolar and cross-polar radiation of Vivaldi antenna on dielectric substrate,”IEEE Trans. Antennas Propagat., vol. 48, no. 1, Jan. 2000.
[33] B. Stockbroeckx and A. V. Vorst,“Electromagnetic modes in conical transmission line with application to linearly tapered slot antenna,”IEEE Trans. Antennas Propagat., to be published.
[34] I. Huynen, D. Vanhoenacker, and A. V. Vorst,“Spectral domain form of new variational expression for very fast calculation of multilayered lossy planar line parameters,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2099-2106, Nov. 1994.
[35] V. Rumsey, Frequency Independent Antennas, Academic Press, New York, 1966.
[36] Y. Mushiake, Self-Complementary Antennas, Springer-Verlag, Berlin, 1996.
[37] J. D. Dyson,“The equiangular spiral antenna,”IRE Trans. Antennas & Propogation, vol. AP-7, pp. 181-187, Apr. 1959.
[38] H. Nakano, Helical and Spiral antennas-A Numerical Approach, Research Studies Press, Wiley, New York, 1987.

無法下載圖示 全文公開日期 2011/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE