簡易檢索 / 詳目顯示

研究生: 林瑋晟
Wei-Cheng Lin
論文名稱: 利用化學修飾菊苣纖維的口服載體包覆老藥新用作為肝癌組合式療法
Dual repurposing drugs loaded in chemical-modified inulin as an oral administration drug carrier for liver cancer combination therapy.
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 王毓淇
Yu-Chi Wang
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 菊苣纖維口服載體肝癌
外文關鍵詞: Inulin, Oral administration, Liver cancer
相關次數: 點閱:353下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肝癌作為目前全球最為流行的癌症之一,一直是一個難以被治癒的疾病,從相關的文獻中可以知道無論是蕾莎瓦(Sorafenib)、樂衛瑪(Lenvatinib),這兩種晚期口服晚期抗癌藥物,都有明顯的副作用,且患者需要肝功能及體能良好才能使用該藥物,並且兩種藥物只能擇一使用,不能交互使用,因此在治療上有需多使用的困難以及治療效果不如預期的情形。
本研究希望透過新發現具有抗癌作用的老藥新用(Repurposing drug)的組合式療法,而不是使用已知的常見抗癌化療物作為目標,除了已知的藥物在毒性上有較久的臨床觀察,相關的安全性也較高,在法規的限制上也比新藥來的更易通過,然而本研究所使用的兩支老藥新用的藥品分別是耐克螺(Niclosamide)以及戒酒硫(Disulfiram)。不過這兩種藥都有一樣的問題,首先是親脂性高造成生物利用性低和嚴重的首度效應造成在胃部、腸道運輸的過程中造成大量的藥物失去活性,因此本研究選擇使用化學修飾菊苣纖維作為口服的兩性載體,該纖維的特性除了可以承受胃部的極端強酸還境之外,還可以被腸道吸收,因此本研究的化學修飾菊苣纖維包裹兩支老藥新用的口服顆粒,除了可以治療肝癌以外,還可以減輕患者在靜脈注射治療過程的痛苦以外,也可以降低感染的風險,避免手術置入人工血管或是中央靜脈導管的相關費用支出以及體力的消耗。


Hepatocellular carcinoma, being one of the most prevalent cancers worldwide, has posed significant challenges in terms of treatment due to its resistance to cure. Existing literature reveals that both Sorafenib and Lenvatinib, two orally administered advanced-stage anticancer drugs, exhibit notable side effects. Patients require well-functioning liver and overall health to tolerate these medications. Furthermore, the use of either Sorafenib or Lenvatinib is exclusive, prohibiting their combined administration. Consequently, therapeutic difficulties arise, leading to suboptimal treatment outcomes.
This study aims to explore a combination therapy approach using repurposed drugs with anticancer properties, rather than targeting conventional known anticancer chemotherapeutics. The selected repurposed drugs have established clinical observations of lower toxicity, increased safety, and easier regulatory clearance compared to novel drugs. The two repurposed drugs employed in this study are Niclosamide and Disulfiram. However, both drugs share a common challenge: their high lipophilicity results in reduced bioavailability and significant first-pass effects during gastric and intestinal transport. To address this issue, the study employs chemically modified inulin fibers as oral dual-functional carriers. These fibers not only withstand the harsh acidic environment of the stomach but are also absorbed in the intestines. Hence, the chemically modified inulin fiber encapsulates the repurposed drugs in oral granular form.
Beyond their efficacy against liver cancer, this approach offers additional advantages. It mitigates patient discomfort associated with intravenous injection treatments, reduces infection risks, and circumvents the expenses and physical toll of surgical implantation of artificial blood vessels or central venous catheters.

摘要 3 Abstract 4 致謝 5 目錄 6 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 1 1.3論文架構 3 第二章 文獻回顧 4 2.1菊苣纖維(Inulin) 4 2-1-1菊苣纖維之結構與物化性質 4 2-1-2菊苣纖維(Inulin)在生醫材料領域的應用 4 2-2乙醯化菊苣纖維(Acetyl Inulin, INAc) 5 2-2-1乙醯化 5 2-3 Niclosamide 6 2-3-1 Niclosamide之結構與物化性質 6 2-3-2 Niclosamide在醫療領域的應用 7 2-3-3 Niclosamide臨床應用之難處 7 2-4 Disulfiram 8 2-4-1 Disulfiram之結構與物化性質 8 2-4-2 Disulfiram在醫療領域的應用 8 2-4-3 Disulfiram臨床應用之難處 9 2-5 電噴灑系統(Electrospray) 9 2-5-1電噴灑系統 9 2-5-2電噴灑之設置 9 2-5-3影響電噴灑系統之主要因素 10 2-6口服藥物系統(Oral administration) 11 2-6-1口服藥物介紹 11 2-6-2口服藥物載體之應用及其困難 12 2-7肝癌(Hepatocellular carcinoma) 13 2-7-1肝癌的介紹 13 2-7-2肝癌治療的困難 14 第三章 實驗內容 15 3-1實驗設計 15 3-2實驗材料與儀器 15 3-2-1材料 15 3-2-2儀器設備 16 3-3乙醯化菊苣纖維製備步驟 16 3-4試驗分析 17 3-4-1 傅里葉紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 17 3-4-2核磁共振光譜法(Nuclear Magnetic Resonance, NMR) 17 3-4-3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 18 3-4-4微孔盤光譜分析儀(Plate Reader) 19 3-5細胞實驗測試 19 3-5-1四甲基偶氮唑鹽(MTT)試劑 19 3-5-2細胞毒性測試步驟 19 3-5-3 ROS測試(DCFH-DA) 20 3-5-4細胞ROS測試步驟 20 3-5-5 細胞中基因表現量(NF-κB) 21 3-5-6細胞中NF-κB基因表現測試步驟 21 3-5-7細胞轉移實驗-滑痕測試 22 3-5-8細胞轉移實驗步驟 22 3-5-9細胞內微絲(Actin filament)染色 23 3-5-10細胞內微絲(Actin filament)染色步驟 23 3-6動物實驗 24 3-6-1肝癌動物模型 24 3-6-2抗癌實驗流程 25 第四章 結果 25 4-1乙醯化菊苣纖維製備步驟 25 4-2定性分析 26 4-2-1 傅里葉紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 26 4-2-2核磁共振光譜法(Nuclear Magnetic Resonance, NMR) 27 4-2-3官能基取代率(Substitution Rate) 27 4-3電噴灑實驗(Electrospray) 28 4-3-1不同溫度的收集板對顆粒的影響 28 4-3-2不同溶劑比例對顆粒的影響 29 4-3-3不同乙醯化菊苣纖維濃度對顆粒的影響 29 4-3-4不同電噴灑距離對顆粒的影響 29 4-4細胞實驗測試 29 4-4-1細胞毒性測試(MTT assay) 29 4-4-2 ROS累積情形(DCFH-DA) 29 4-4-3細胞中癌症基因表現量(NF-κB) 30 4-4-4抗轉移實驗(滑痕測試) 30 4-4-5細胞內微絲染色(Phalloidin staining) 30 4-5動物實驗 30 4-5-1肝癌動物模型 30 4-6-2抗癌實驗流程 30 第五章 討論 31 5-1 乙醯化菊苣纖維 31 5-2不同參數對電噴灑實驗的影響 31 5-3口服藥物載體的細胞毒性 32 5-4口服藥物載體自由基累積和基因的表現 32 5-5口服藥物抗轉移能力及細胞內微絲變化 32 5-6口服藥物載體的抗癌動物模型 32 第六章 結論與未來展望 32 6.1結論 32 6.2未來展望 32 第七章 參考文獻 33

[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–49.
[2] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72: 7–33.
[3] Petrick JL, Florio AA, Znaor A, et al. International trends in hepatocellular carcinoma incidence, 1978–2012. Int J Cancer 2020; 147: 317–30.
[4] Sun J, Althoff KN, Jing Y, et al. Trends in hepatocellular carcinoma incidence and risk among persons with HIV in the US and Canada, 1996–2015. JAMA Netw Open 2021; 4: e2037512.
[5] Chen T, Liu J, Li Y, Wei S. Burden of disease associated with dietary exposure to aflatoxins in China in 2020. Nutrients 2022; 14: 1027.
[6] Romano A, Angeli P, Piovesan S, et al. Newly diagnosed hepatocellular carcinoma in patients with advanced hepatitis C treated with DAAs: a prospective population study. J Hepatol 2018; 69: 345–52.
[7] Dave S, Park S, Murad MH, et al. Comparative effectiveness of entecavir versus tenofovir for preventing hepatocellular carcinoma in patients with chronic hepatitis B: a systematic review and meta-analysis. Hepatology 2021; 73: 68–78.
[8] Papatheodoridis GV, Idilman R, Dalekos GN, et al. The risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in Caucasians with chronic hepatitis B. Hepatology 2017; 66: 1444–53.
[9] Chiang CJ, Yang YW, You SL, Lai MS, Chen CJ. Thirty-year outcomes of the national hepatitis B immunization program in Taiwan. JAMA 2013; 310: 974–76.
[10] Kanwal F, Kramer JR, Asch SM, Cao Y, Li L, El-Serag HB. Long-term risk of hepatocellular carcinoma in HCV patients treated with direct acting antiviral agents. Hepatology 2020; 71: 44–55.
[11] He, S.; Liu, Z.; Xu, D. Advance in oral delivery systems for therapeutic protein. J. Drug Target. 2019, 27, 283–291.
[12] Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—Influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020, 11, 524.
[13] Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019, 144, 57–77.
[14] Reinholz, J.; Landfester, K.; Mailander, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018, 25, 1694–1705.
[15] Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J.; Sun, W.; Zhang, Z.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345–2356.
[16] Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F.J. PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv. 2016, 23, 2095–2114.
[17] Sadeghi, S.; Lee, W.K.; Kong, S.N.; Shetty, A.; Drum, C.L. Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacol. Res. 2020, 158, 104685.
[18] Ding, C.; Li, Z. A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 1440–1453.
[19] Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017, 6, 44.
[20] Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomed. 2014, 9, 1231–1242.
[21] S. Pushpakom, F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, et al., Drug repurposing: progress, challenges and recommendations, Nat. Rev. Drug Discov. 18 (2019) 41–58.
[22] Y. Cha, T. Erez, I.J. Reynolds, D. Kumar, J. Ross, G. Koytiger, R. Kusko, B. Zeskind, S. Risso, E. Kagan, et al., Drug repurposing from the perspective of pharmaceutical companies, Br. J. Pharmacol. 175 (2018) 168–180.
[23] R.K. Guy, R.S. DiPaola, F. Romanelli, R.E. Dutch, Rapid repurposing of drugs for COVID-19, Science 368 (2020) 829–830.
[24] A. Kirtonia, K. Gala, S.G. Fernandes, G. Pandya, A.K. Pandey, G. Sethi, E. Khattar, M. Garg, Repurposing of drugs: an attractive pharmacological strategy for cancer therapeutics, Semin. Cancer Biol. 68 (2021) 258–278.
[25] S.M. Strittmatter, Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks, Nat. Med. 20 (2014) 590–591.
[26] N. Nosengo, Can you teach old drugs new tricks? Nature 534 (2016) 314–316
[27] C.G. Begley, M. Ashton, J. Baell, M. Bettess, M.P. Brown, B. Carter, W.N. Charman, C. Davis, S. Fisher, I. Frazer, et al., Drug repurposing: misconceptions, challenges, and opportunities for academic researchers, Sci. Transl. Med. 13 (2021), eabd5524.
[28] R.A. Mook, X.-R. Ren, J. Wang, H. Piao, L.S. Barak, H.K. Lyerly, W. Chen, Benzimidazole inhibitors from the niclosamide chemotype inhibit Wnt/β-catenin signaling with selectivity over effects on ATP Homeostasis, Bioorg. Med. Chem. 25 (2017) 1804–1816.
[29] P. Andrews, J. Thyssen, D. Lorke, The biology and toxicology of molluscicides, bayluscide, Pharmacol. Ther. 19 (1982) 245–295.
[30] A.K. Giri, N. Adhikari, K.A. Khan, Comparative genotoxicity of six salicylic acid derivatives in bone marrow cells of mice, Mutat. Res. Toxicol. 370 (1996) 1–9.
[31] Z. Zhang, L. Zhou, N. Xie, E.C. Nice, T. Zhang, Y. Cui, C. Huang, Overcoming cancer therapeutic bottleneck by drug repurposing, Signal Transduction Targeted Ther 5 (1) (2020) 113.
[32] C.R. Chong, D.J. Sullivan Jr., New uses for old drugs, Nature 448 (7154) (2007) 645–646.
[33] S.M. Corsello, R.T. Nagari, R.D. Spangler, J. Rossen, M. Kocak, J.G. Bryan, R. Humeidi, D. Peck, X. Wu, A.A. Tang, V.M. Wang, S.A. Bender, E. Lemire, R. Narayan, P. Montgomery, U. Ben-David, C.W. Garvie, Y. Chen, M.G. Rees, N. J. Lyons, J.M. McFarland, B.T. Wong, L. Wang, N. Dumont, P.J. O’Hearn, E. Stefan, J.G. Doench, C.N. Harrington, H. Greulich, M. Meyerson, F. Vazquez, A. Subramanian, J.A. Roth, J.A. Bittker, J.S. Boehm, C.C. Mader, A. Tsherniak, T. R. Golub, Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling, Nat. Can. 1 (2) (2020) 235–248.
[34] H. Li, J. Wang, C. Wu, L. Wang, Z.S. Chen, W. Cui, The combination of disulfiram and copper for cancer treatment, Drug Discov. Today 25 (6) (2020) 1099–1108.
[35] B. Johansson, A review OF the pharmacokinetics and pharmacodynamics OF disulfiram and its metabolites, Acta Psychiatr. Scand. 86 (1992) 15–26.
[36] E.F. Lewison, Spontaneous regression of breast cancer, Natl. Cancer Inst. Monogr. 44 (1976) 23–26.
[37] K. Iljin, K. Ketola, P. Vainio, P. Halonen, P. Kohonen, V. Fey, R.C. Grafstrom, M. Perala, O. Kallioniemi, High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth, Clin. Cancer Res. 15 (19) (2009) 6070–6078.
[38] T.W. Loo, M.C. Bartlett, D.M. Clarke, Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein, Mol. Pharm. 1 (6) (2004) 426–433.
[39] T.W. Loo, D.M. Clarke, Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism, J. Natl. Cancer Inst. 92 (11) (2000) 898–902.
[40] P. Liu, I.S. Kumar, S. Brown, V. Kannappan, P.E. Tawari, J.Z. Tang, W. Jiang, A. L. Armesilla, J.L. Darling, W. Wang, Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triplenegative breast cancer cells, Br. J. Cancer 109 (7) (2013) 1876–1885.
[41] Development of self-healing coatings based on ethyl cellulose micro/nano-capsules. Afinjuomo, F., Barclay, T. G., Song, Y., Parikh, A., Petrovsky, N., & Garg, S. Surface Engineering, 35(3), 273–280. (2019).
[42] Alhaique, F., Matricardi, P., Di Meo, C., Coviello, T., & Montanari, E. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. 104–111. Reactive & Functional Polymers, 134, (2015).
[43] Anirudhan, T. S.Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. Journal of Drug Delivery Science and Technology, 30, 300–309. (2016).
[44] Ansari, R. M., & Bhat, B. R. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. International Journal of Biological Macromolecules, 88, 222–235. (2019).
[45] Antony, R., Arun, T., & Manickam, S. T. D. Copper (II) Schiff base-graphene oxide composite as an efficient catalyst for Suzuki-Miyaura reaction. Chemical Physics, 517, 155–160. (2019).
[46] Apolin´ario, A. C., de Lima Damasceno, B. P. G., de Macˆedo Beltr˜ao, N. E., Pessoa, A., Converti, A., & da Silva, J. A. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological Macromolecules, 119, 446–452. (2014).
[47] Barclay, T. G., Day, C. M., Petrovsky, N., & Garg, S. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers, 101, 368–378. (2019).
[48] Beir˜ao-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Janu´ario, M. I. N., Vicente, A. A., … _Delgadillo, I. Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers. (2013).
[49] Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: synthesis and characterization. Chem. Eng. J. 279, 188–197. Bruix, J., Llovet, J. M., Castells, A., Montañá, X., Brú, C., Ayuso, M. D. C., et al. (1998).
Chan, A. O., Yuen, M. F., Hui, C. K., Tso, W. K., and Lai, C. L. (2002).
[50] A prospective study regarding the complications of transcatheter intraarterial lipiodol chemoembolization in patients with hepatocellular carcinoma. Cancer 94, 1747–1752.
[51]Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin (2021) 71:7–33.
[52] Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular Portraits of Human Breast Tumours. Nature (2000) 406:747–52.
[53] Foulkes WD, Smith IE, Reis-Filho JS. Triple-Negative Breast Cancer. N Engl J Med (2010) 363:1938–48.
[54] Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab Versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med (2016) 375:1823–33.
[55] Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune Induction Strategies in Metastatic Triple-Negative Breast Cancer to Enhance the Sensitivity to PD-1 Blockade: The TONIC Trial. Nat Med (2019) 25:920–8.
[56] Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med (2015) 373:23–34.
[57] Ribas A, Wolchok JD. Cancer Immunotherapy Using Checkpoint Blockade. Science (2018) 359:1350–5.
[58] Mavratzas A, Seitz J, Smetanay K, Schneeweiss A, Jager D, Fremd C. Atezolizumab for Use in PD-L1-Positive Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer. Future Oncol (2020) 16:4439–53. doi: 10.2217/fon-2019-0468
[59] Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 Immune-Checkpoint Blockade in B-Cell Lymphomas. Nat Rev Clin Oncol (2017) 14:203–20.
[60] Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PDL1 Inhibitors as a Form of Cancer Immunotherapy: A Comprehensive Review of Registration Trials and Future Conside.
[71] Darnell JE Jr. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002.
[72] Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009.
[73] Railo A, Nagy II, Kilpelainen P, Vainio S. Wnt-11 signaling leads to down-regulation of the Wnt/ beta-catenin, JNK/AP-1 and NF-kappaB pathways and promotes viability in the CHO-K1 cells. Exp Cell Res. 2008.
[74] Kikuchi A, Yamamoto H, Sato A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 2009.
[75] Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006.
[76] Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004.
[77] MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009.
[78] van dS V, Smits JF, Blankesteijn WM. The Wnt/frizzled pathway in cardiovascular development and disease: friend or foe? Eur J Pharmacol. 2008.
[79] Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007.
[80] Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006.
[81] W. Ahmed, S. Rashid, Functional and therapeutic potential of inulin: a comprehensive review, Crit. Rev. Food Sci. Nutr. 59 (1) (2019) 1–13.
[82] M. Roberfroid, Inulin-type Fructans: Functional Food Ingredients, 1st ed., CRC Press, Boca Raton, 2004.
[83] M. Cunningham, M.A. Azcarate-Peril, A. Barnard, et al., Shaping the future of probiotics and prebiotics, Trends Microbiol. 29 (8) (2021) 667–685.
[84] W.S.F. Chung, A.W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S. H. Duncan, H.J. Flint, Modulation of the human gut microbiota by dietary fibres occurs at the species level, BMC Biol. 14 (1) (2016) 1–13.
[85] S. Seifert, B. Watzl, Inulin and oligofructose: review of experimental data on immune modulation, J. Nutr. 137 (11) (2007) 2563S–2567S.
[86] J. Van Loo, P. Coussement, L. De Leenheer, H. Hoebregs, G. Smits, On the presence of inulin and oligofructose as natural ingredients in the western diet, Crit. Rev. Food Sci. Nutr. 35 (6) (2009) 525–552.
[87] G. Kelly, Inulin-type prebiotics–a review: part 1, Altern Med Rev. 13 (4) (2009) 315–329.
[88] K.R. Niness, Inulin and oligofructose: what are they, J. Nutr. 22 (1999)
[89] G. Den Besten, K. Van Eunen, A.K. Groen, K. Venema, D.J. Reijngoud, B. M. Bakker, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res. 54 (9) (2013) 2325–2340,
[90] W. Akram, N. Garud, R. Joshi, Role of inulin as prebiotics on inflammatory bowel disease, Drug Discov. Ther. 13 (1) (2019) 1–8.

無法下載圖示 全文公開日期 2025/08/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE