研究生: |
林瑋晟 Wei-Cheng Lin |
---|---|
論文名稱: |
利用化學修飾菊苣纖維的口服載體包覆老藥新用作為肝癌組合式療法 Dual repurposing drugs loaded in chemical-modified inulin as an oral administration drug carrier for liver cancer combination therapy. |
指導教授: |
白孟宜
Meng-Yi Bai |
口試委員: |
王毓淇
Yu-Chi Wang 鄭詠馨 Yung-Hsin Cheng |
學位類別: |
碩士 Master |
系所名稱: |
應用科技學院 - 醫學工程研究所 Graduate Institute of Biomedical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 菊苣纖維 、口服載體 、肝癌 |
外文關鍵詞: | Inulin, Oral administration, Liver cancer |
相關次數: | 點閱:353 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌作為目前全球最為流行的癌症之一,一直是一個難以被治癒的疾病,從相關的文獻中可以知道無論是蕾莎瓦(Sorafenib)、樂衛瑪(Lenvatinib),這兩種晚期口服晚期抗癌藥物,都有明顯的副作用,且患者需要肝功能及體能良好才能使用該藥物,並且兩種藥物只能擇一使用,不能交互使用,因此在治療上有需多使用的困難以及治療效果不如預期的情形。
本研究希望透過新發現具有抗癌作用的老藥新用(Repurposing drug)的組合式療法,而不是使用已知的常見抗癌化療物作為目標,除了已知的藥物在毒性上有較久的臨床觀察,相關的安全性也較高,在法規的限制上也比新藥來的更易通過,然而本研究所使用的兩支老藥新用的藥品分別是耐克螺(Niclosamide)以及戒酒硫(Disulfiram)。不過這兩種藥都有一樣的問題,首先是親脂性高造成生物利用性低和嚴重的首度效應造成在胃部、腸道運輸的過程中造成大量的藥物失去活性,因此本研究選擇使用化學修飾菊苣纖維作為口服的兩性載體,該纖維的特性除了可以承受胃部的極端強酸還境之外,還可以被腸道吸收,因此本研究的化學修飾菊苣纖維包裹兩支老藥新用的口服顆粒,除了可以治療肝癌以外,還可以減輕患者在靜脈注射治療過程的痛苦以外,也可以降低感染的風險,避免手術置入人工血管或是中央靜脈導管的相關費用支出以及體力的消耗。
Hepatocellular carcinoma, being one of the most prevalent cancers worldwide, has posed significant challenges in terms of treatment due to its resistance to cure. Existing literature reveals that both Sorafenib and Lenvatinib, two orally administered advanced-stage anticancer drugs, exhibit notable side effects. Patients require well-functioning liver and overall health to tolerate these medications. Furthermore, the use of either Sorafenib or Lenvatinib is exclusive, prohibiting their combined administration. Consequently, therapeutic difficulties arise, leading to suboptimal treatment outcomes.
This study aims to explore a combination therapy approach using repurposed drugs with anticancer properties, rather than targeting conventional known anticancer chemotherapeutics. The selected repurposed drugs have established clinical observations of lower toxicity, increased safety, and easier regulatory clearance compared to novel drugs. The two repurposed drugs employed in this study are Niclosamide and Disulfiram. However, both drugs share a common challenge: their high lipophilicity results in reduced bioavailability and significant first-pass effects during gastric and intestinal transport. To address this issue, the study employs chemically modified inulin fibers as oral dual-functional carriers. These fibers not only withstand the harsh acidic environment of the stomach but are also absorbed in the intestines. Hence, the chemically modified inulin fiber encapsulates the repurposed drugs in oral granular form.
Beyond their efficacy against liver cancer, this approach offers additional advantages. It mitigates patient discomfort associated with intravenous injection treatments, reduces infection risks, and circumvents the expenses and physical toll of surgical implantation of artificial blood vessels or central venous catheters.
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–49.
[2] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72: 7–33.
[3] Petrick JL, Florio AA, Znaor A, et al. International trends in hepatocellular carcinoma incidence, 1978–2012. Int J Cancer 2020; 147: 317–30.
[4] Sun J, Althoff KN, Jing Y, et al. Trends in hepatocellular carcinoma incidence and risk among persons with HIV in the US and Canada, 1996–2015. JAMA Netw Open 2021; 4: e2037512.
[5] Chen T, Liu J, Li Y, Wei S. Burden of disease associated with dietary exposure to aflatoxins in China in 2020. Nutrients 2022; 14: 1027.
[6] Romano A, Angeli P, Piovesan S, et al. Newly diagnosed hepatocellular carcinoma in patients with advanced hepatitis C treated with DAAs: a prospective population study. J Hepatol 2018; 69: 345–52.
[7] Dave S, Park S, Murad MH, et al. Comparative effectiveness of entecavir versus tenofovir for preventing hepatocellular carcinoma in patients with chronic hepatitis B: a systematic review and meta-analysis. Hepatology 2021; 73: 68–78.
[8] Papatheodoridis GV, Idilman R, Dalekos GN, et al. The risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in Caucasians with chronic hepatitis B. Hepatology 2017; 66: 1444–53.
[9] Chiang CJ, Yang YW, You SL, Lai MS, Chen CJ. Thirty-year outcomes of the national hepatitis B immunization program in Taiwan. JAMA 2013; 310: 974–76.
[10] Kanwal F, Kramer JR, Asch SM, Cao Y, Li L, El-Serag HB. Long-term risk of hepatocellular carcinoma in HCV patients treated with direct acting antiviral agents. Hepatology 2020; 71: 44–55.
[11] He, S.; Liu, Z.; Xu, D. Advance in oral delivery systems for therapeutic protein. J. Drug Target. 2019, 27, 283–291.
[12] Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—Influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020, 11, 524.
[13] Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019, 144, 57–77.
[14] Reinholz, J.; Landfester, K.; Mailander, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018, 25, 1694–1705.
[15] Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J.; Sun, W.; Zhang, Z.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345–2356.
[16] Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F.J. PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv. 2016, 23, 2095–2114.
[17] Sadeghi, S.; Lee, W.K.; Kong, S.N.; Shetty, A.; Drum, C.L. Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacol. Res. 2020, 158, 104685.
[18] Ding, C.; Li, Z. A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 1440–1453.
[19] Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017, 6, 44.
[20] Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomed. 2014, 9, 1231–1242.
[21] S. Pushpakom, F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, et al., Drug repurposing: progress, challenges and recommendations, Nat. Rev. Drug Discov. 18 (2019) 41–58.
[22] Y. Cha, T. Erez, I.J. Reynolds, D. Kumar, J. Ross, G. Koytiger, R. Kusko, B. Zeskind, S. Risso, E. Kagan, et al., Drug repurposing from the perspective of pharmaceutical companies, Br. J. Pharmacol. 175 (2018) 168–180.
[23] R.K. Guy, R.S. DiPaola, F. Romanelli, R.E. Dutch, Rapid repurposing of drugs for COVID-19, Science 368 (2020) 829–830.
[24] A. Kirtonia, K. Gala, S.G. Fernandes, G. Pandya, A.K. Pandey, G. Sethi, E. Khattar, M. Garg, Repurposing of drugs: an attractive pharmacological strategy for cancer therapeutics, Semin. Cancer Biol. 68 (2021) 258–278.
[25] S.M. Strittmatter, Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks, Nat. Med. 20 (2014) 590–591.
[26] N. Nosengo, Can you teach old drugs new tricks? Nature 534 (2016) 314–316
[27] C.G. Begley, M. Ashton, J. Baell, M. Bettess, M.P. Brown, B. Carter, W.N. Charman, C. Davis, S. Fisher, I. Frazer, et al., Drug repurposing: misconceptions, challenges, and opportunities for academic researchers, Sci. Transl. Med. 13 (2021), eabd5524.
[28] R.A. Mook, X.-R. Ren, J. Wang, H. Piao, L.S. Barak, H.K. Lyerly, W. Chen, Benzimidazole inhibitors from the niclosamide chemotype inhibit Wnt/β-catenin signaling with selectivity over effects on ATP Homeostasis, Bioorg. Med. Chem. 25 (2017) 1804–1816.
[29] P. Andrews, J. Thyssen, D. Lorke, The biology and toxicology of molluscicides, bayluscide, Pharmacol. Ther. 19 (1982) 245–295.
[30] A.K. Giri, N. Adhikari, K.A. Khan, Comparative genotoxicity of six salicylic acid derivatives in bone marrow cells of mice, Mutat. Res. Toxicol. 370 (1996) 1–9.
[31] Z. Zhang, L. Zhou, N. Xie, E.C. Nice, T. Zhang, Y. Cui, C. Huang, Overcoming cancer therapeutic bottleneck by drug repurposing, Signal Transduction Targeted Ther 5 (1) (2020) 113.
[32] C.R. Chong, D.J. Sullivan Jr., New uses for old drugs, Nature 448 (7154) (2007) 645–646.
[33] S.M. Corsello, R.T. Nagari, R.D. Spangler, J. Rossen, M. Kocak, J.G. Bryan, R. Humeidi, D. Peck, X. Wu, A.A. Tang, V.M. Wang, S.A. Bender, E. Lemire, R. Narayan, P. Montgomery, U. Ben-David, C.W. Garvie, Y. Chen, M.G. Rees, N. J. Lyons, J.M. McFarland, B.T. Wong, L. Wang, N. Dumont, P.J. O’Hearn, E. Stefan, J.G. Doench, C.N. Harrington, H. Greulich, M. Meyerson, F. Vazquez, A. Subramanian, J.A. Roth, J.A. Bittker, J.S. Boehm, C.C. Mader, A. Tsherniak, T. R. Golub, Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling, Nat. Can. 1 (2) (2020) 235–248.
[34] H. Li, J. Wang, C. Wu, L. Wang, Z.S. Chen, W. Cui, The combination of disulfiram and copper for cancer treatment, Drug Discov. Today 25 (6) (2020) 1099–1108.
[35] B. Johansson, A review OF the pharmacokinetics and pharmacodynamics OF disulfiram and its metabolites, Acta Psychiatr. Scand. 86 (1992) 15–26.
[36] E.F. Lewison, Spontaneous regression of breast cancer, Natl. Cancer Inst. Monogr. 44 (1976) 23–26.
[37] K. Iljin, K. Ketola, P. Vainio, P. Halonen, P. Kohonen, V. Fey, R.C. Grafstrom, M. Perala, O. Kallioniemi, High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth, Clin. Cancer Res. 15 (19) (2009) 6070–6078.
[38] T.W. Loo, M.C. Bartlett, D.M. Clarke, Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein, Mol. Pharm. 1 (6) (2004) 426–433.
[39] T.W. Loo, D.M. Clarke, Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism, J. Natl. Cancer Inst. 92 (11) (2000) 898–902.
[40] P. Liu, I.S. Kumar, S. Brown, V. Kannappan, P.E. Tawari, J.Z. Tang, W. Jiang, A. L. Armesilla, J.L. Darling, W. Wang, Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triplenegative breast cancer cells, Br. J. Cancer 109 (7) (2013) 1876–1885.
[41] Development of self-healing coatings based on ethyl cellulose micro/nano-capsules. Afinjuomo, F., Barclay, T. G., Song, Y., Parikh, A., Petrovsky, N., & Garg, S. Surface Engineering, 35(3), 273–280. (2019).
[42] Alhaique, F., Matricardi, P., Di Meo, C., Coviello, T., & Montanari, E. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. 104–111. Reactive & Functional Polymers, 134, (2015).
[43] Anirudhan, T. S.Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. Journal of Drug Delivery Science and Technology, 30, 300–309. (2016).
[44] Ansari, R. M., & Bhat, B. R. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. International Journal of Biological Macromolecules, 88, 222–235. (2019).
[45] Antony, R., Arun, T., & Manickam, S. T. D. Copper (II) Schiff base-graphene oxide composite as an efficient catalyst for Suzuki-Miyaura reaction. Chemical Physics, 517, 155–160. (2019).
[46] Apolin´ario, A. C., de Lima Damasceno, B. P. G., de Macˆedo Beltr˜ao, N. E., Pessoa, A., Converti, A., & da Silva, J. A. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological Macromolecules, 119, 446–452. (2014).
[47] Barclay, T. G., Day, C. M., Petrovsky, N., & Garg, S. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers, 101, 368–378. (2019).
[48] Beir˜ao-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Janu´ario, M. I. N., Vicente, A. A., … _Delgadillo, I. Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers. (2013).
[49] Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: synthesis and characterization. Chem. Eng. J. 279, 188–197. Bruix, J., Llovet, J. M., Castells, A., Montañá, X., Brú, C., Ayuso, M. D. C., et al. (1998).
Chan, A. O., Yuen, M. F., Hui, C. K., Tso, W. K., and Lai, C. L. (2002).
[50] A prospective study regarding the complications of transcatheter intraarterial lipiodol chemoembolization in patients with hepatocellular carcinoma. Cancer 94, 1747–1752.
[51]Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin (2021) 71:7–33.
[52] Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular Portraits of Human Breast Tumours. Nature (2000) 406:747–52.
[53] Foulkes WD, Smith IE, Reis-Filho JS. Triple-Negative Breast Cancer. N Engl J Med (2010) 363:1938–48.
[54] Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab Versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med (2016) 375:1823–33.
[55] Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune Induction Strategies in Metastatic Triple-Negative Breast Cancer to Enhance the Sensitivity to PD-1 Blockade: The TONIC Trial. Nat Med (2019) 25:920–8.
[56] Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med (2015) 373:23–34.
[57] Ribas A, Wolchok JD. Cancer Immunotherapy Using Checkpoint Blockade. Science (2018) 359:1350–5.
[58] Mavratzas A, Seitz J, Smetanay K, Schneeweiss A, Jager D, Fremd C. Atezolizumab for Use in PD-L1-Positive Unresectable, Locally Advanced or Metastatic Triple-Negative Breast Cancer. Future Oncol (2020) 16:4439–53. doi: 10.2217/fon-2019-0468
[59] Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 Immune-Checkpoint Blockade in B-Cell Lymphomas. Nat Rev Clin Oncol (2017) 14:203–20.
[60] Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PDL1 Inhibitors as a Form of Cancer Immunotherapy: A Comprehensive Review of Registration Trials and Future Conside.
[71] Darnell JE Jr. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002.
[72] Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009.
[73] Railo A, Nagy II, Kilpelainen P, Vainio S. Wnt-11 signaling leads to down-regulation of the Wnt/ beta-catenin, JNK/AP-1 and NF-kappaB pathways and promotes viability in the CHO-K1 cells. Exp Cell Res. 2008.
[74] Kikuchi A, Yamamoto H, Sato A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 2009.
[75] Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006.
[76] Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004.
[77] MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009.
[78] van dS V, Smits JF, Blankesteijn WM. The Wnt/frizzled pathway in cardiovascular development and disease: friend or foe? Eur J Pharmacol. 2008.
[79] Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007.
[80] Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006.
[81] W. Ahmed, S. Rashid, Functional and therapeutic potential of inulin: a comprehensive review, Crit. Rev. Food Sci. Nutr. 59 (1) (2019) 1–13.
[82] M. Roberfroid, Inulin-type Fructans: Functional Food Ingredients, 1st ed., CRC Press, Boca Raton, 2004.
[83] M. Cunningham, M.A. Azcarate-Peril, A. Barnard, et al., Shaping the future of probiotics and prebiotics, Trends Microbiol. 29 (8) (2021) 667–685.
[84] W.S.F. Chung, A.W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S. H. Duncan, H.J. Flint, Modulation of the human gut microbiota by dietary fibres occurs at the species level, BMC Biol. 14 (1) (2016) 1–13.
[85] S. Seifert, B. Watzl, Inulin and oligofructose: review of experimental data on immune modulation, J. Nutr. 137 (11) (2007) 2563S–2567S.
[86] J. Van Loo, P. Coussement, L. De Leenheer, H. Hoebregs, G. Smits, On the presence of inulin and oligofructose as natural ingredients in the western diet, Crit. Rev. Food Sci. Nutr. 35 (6) (2009) 525–552.
[87] G. Kelly, Inulin-type prebiotics–a review: part 1, Altern Med Rev. 13 (4) (2009) 315–329.
[88] K.R. Niness, Inulin and oligofructose: what are they, J. Nutr. 22 (1999)
[89] G. Den Besten, K. Van Eunen, A.K. Groen, K. Venema, D.J. Reijngoud, B. M. Bakker, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res. 54 (9) (2013) 2325–2340,
[90] W. Akram, N. Garud, R. Joshi, Role of inulin as prebiotics on inflammatory bowel disease, Drug Discov. Ther. 13 (1) (2019) 1–8.