簡易檢索 / 詳目顯示

研究生: 蔡書馨
Shu-hsin Tsai
論文名稱: 離心式泵浦效率改良之數值與實驗研究
Numerical and Experimental Study of Efficiency Enhancement on the Centrifugal Pump
指導教授: 林顯群
Sheam-chyun Lin
口試委員: 莊福盛
Fu-sheng Chuang
李基禎
Ji-jen Lee
郭鴻森
Hong-sen Kou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 155
中文關鍵詞: 離心式泵浦揚程效率數值模擬
外文關鍵詞: Centrifugal pump, Hydraulic head, Numerical simulation, Efficiency
相關次數: 點閱:379下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

離心式泵浦是藉由離心力對流經泵浦內之水進行加壓,從原理、構造及其運轉性能等方面來看,離心式泵浦較其它泵浦優異,為目前用途最廣泛之泵浦,然而離心泵浦優點雖多,卻仍有流量較小、葉片空蝕以及水槌現象之問題,且近年來環保意識逐漸抬頭,因此不僅是要解決如何將離心式泵浦的流量提升,減少空蝕、水槌現象等問題,更重要的是提升泵浦在實際運作時的效率。
本研究首先針對離心式泵浦進行數值模擬,探討在原始設計中泵浦內部流場和揚程以及效率之情況,並與實驗性能數據做對比,以驗證CFD分析技術在泵浦數值模擬之可行性;並依計算模擬之流場情況對泵浦進行改良,在幾何條件符合ISO 9906的規範下,藉由調整葉型、入口角度、葉片厚度、泵體斷面等系列方法,探討各參數對性能之影響,最後找出一組最佳參數組合,來提升泵浦在操作點下之效率。
最後並針對此最佳化水泵設計,藉由CNC與鑄造技術製作出實體模型,並在標準的水泵性能測試設備中,依CNS 659~665進行其性能量測工作,其結果可供與CFD結果比對,結果顯示數值模擬與實驗量測數據效率誤差約在±5%內,且在原始設計時理想效率約為51%,改良後效率提升至約57%,而實驗與數值結果比較其誤差也皆在合理範圍內。


This integrated CFD and experiment research focuses on the efficiency enhancement of a centrifugal pump running at operation point. At first, a sample centrifugal pump is chosen to carry out the corresponding CFD simulation and performance measurement for validating the numerical tool established here. Also, the calculated outcomes and generated plots are used for executing a thorough flow visualization to identify the inappropriate flow patterns, which locate around the blade inlet, the housing outlet, and the region between rotor and side-plate of housing. Subsequently, several improving alternatives are proposed to correct these flaws and checked by means of the CFD tool Fluent. Among these imposed modifications, adding airfoil shape and adjusting inlet angle on the rotor blade, enlarging the width of housing near the impeller exit, reducing the clearance between rotor and side plate, and changing the blade number are found effectively to increase its efficiency. Furthermore, prototype of the most effective pump design obtained from this comprehensive parametric study is fabricated with the aids of CNC and casting techniques for executing the performance measurement in the test facility, which is established in accordance with codes CNS 659~665. As a result, the comparisons between experimental data and numerical calculation indicate an acceptable deviation within 5% for all the performance tests considered in this study. Moreover, the pump efficiency is successfully enhanced from the original 51% to 57% under the operation point of centrifugal pump. In conclusion, the accomplishment of this research offers a rigorous and systematic design for the design engineers of centrifugal pump.

摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VIII 表索引 XII 符號索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究動機與方法 9 1.4 本文大綱 10 第二章 離心式泵浦之理論與設計 14 2.1 揚程定義 14 2.1.1 離心力之壓力水頭理論 14 2.1.2 泵之實際揚程與總揚程 21 2.2 比速率 22 2.3 離心泵之效率與特性曲線 24 2.4 葉輪設計 25 2.4.1 離心式泵浦之葉輪形式 25 2.4.2 葉輪參數設計 32 第三章 數值方法 37 3.1 統御方程式 37 3.2 數值計算模式及邊界條件 39 3.2.1 紊流模式 40 3.2.2 壁面函數 42 3.3 邊界條件 47 3.4 網格驗證 49 第四章 實驗設備與方法 54 4.1 水堰法出水量之測定方法與構造 54 4.2 實驗步驟與架構 62 第五章 數值模擬結果 66 5.1 實驗與數值模擬驗證 66 5.1.1 原始設計模型建立 66 5.1.2 原始設計網格模型建立 74 5.1.3 原始設計數值模擬與實驗比較 77 5.1.4 原始設計泵浦之流場缺失 80 5.2 改良方案之數值分析 86 第六章 結論與建議 130 6.1 結論 130 6.2 建議 133 參考文獻 135

[1] 大町昌義原著,徐景福譯,渦旋泵浦之設計,正言出版社,1978。
[2] 洪淑美,"左心室輔助器之設計與數值分析",台灣科技大學機械所,碩士論文,2004。
[3] Sorensen, E., “Potential Flow through Centrifugal Pumps and Turbines,” NACA TM-973,1941.
[4] Acosta, A. J., “An Experimental and Theoretical Investigation of Two-Dimensional Centrifugal Pump Impeller,” Trans. ASME, Vol. 76, pp. 749-763, 1954.
[5] Bowerman, R.and Acosta, A., “Effect of the Volume on Performance of Centrifugal Pump Impeller,” Trans. ASME, Vol. 79, pp. 1057-1069, 1957.
[6] Eckardt, D., “Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller,” ASME Journal of Engineering for Power, Vol. 97, pp. 337-346, 1975.
[7] Johnson, M. W. and Moore, J., “The Influence of Flow Rate on the Wake in a Centrifugal Impeller,” ASME Journal of Engineering for Power, Vol. 105, pp. 33-39, 1983.
[8] 神宮敬著,張兆豐譯,泵之設計製圖,台隆書店出版,1992。
[9] Inoue, M. and Cumpsty, N. A., “Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 106, pp. 455-467, 1984.
[10] Roth, M. and Peikert, R., "Flow Visualization for Turbomachinery Design," Visualization '96 Proceedings, pp. 381-384, 1996.
[11] Jude, L. and Homentcovschi, D., "Numerical Analysis of the Inviscid Incompressible Flow in Two-Dimensional Radial-Flow Pump Impellers," ELSEVIER, Engineering Analysis with Boundary Elements, Vol. 22, pp. 271-279, 1998.
[12] Yu, S. C. M., Ng, B. T. H., Chan, W. K., and Chua, L. P., “The Flow Patterns within the Umpeller Passages of a Centrifugal Blood Pump Model,” ELSEVIER, Medical Engineering and Physics, Vol. 22, pp. 381-393, 2000.
[13] Marek, Behr, Dhruv, Arora and Sebastian, Schulte-Eistrup, “Prediction of Flow Features in Centrifugal Blood Pumps,” European Conference on Computational Mechanics(ECCM), Cracow, Poland, 2001.
[14] Gonzalez, J., Fernandez, J., Blanco E., and Santolaria, C., "Numerical Simulation of the Dynamic Effect due to Impeller-Volute Interaction in a Centrifugal Pump," Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 314-318, 2002.
[15] Hamkins, C.P.and Bross, S., "Use of Surface Flow Visualization Methods in Centrifugal Pump Design, " Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 314-318, 2002.
[16] Gülich, J. F. and Winterthur, L., " Effect of Reynolds-Number and Surface Roughness on the Efficiency of Centrifugal Pumps," ASME Journal of Fluids Engineering, Vol. 125, pp. 670-679, 2003.
[17] Raúl B., Jorge, P. , and Eduardo, B., “Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points,” ELSEVIER, Computers and Fluids, Vol. 39, pp. 895-870, 2010.
[18] Shigemitsu , T., Fukutomi, J. and Kaji, K., "Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow of Mini Centrifugal Pump," Proceedings of the ASME-JSME-KSME Joint Fluids Engineering Conference, Hamamatsu, Shizuoka, Japan, July 24-29, 2011.
[19] 梶原滋美著,張兆豐譯,泵及其使用方法,台隆書店出版,1992。
[20] Fluent 6.2 Documentation, FLUENT INC.
[21] Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[22] 水泵檢驗法(總則),中國國家標準,CNS(695~665)。
[23] 中華民國國家標準(CNS),工業廢水流量測定法,K9064,1981。

QR CODE