簡易檢索 / 詳目顯示

研究生: 劉東凱
Dong-Kai Liu
論文名稱: 田口法與灰關聯分析法對奈米流體-相變化-太陽能光電熱系統的最佳化參數設計研究
A Research on Optimal Design of Nanofluid-PCM-PV/T System Using Taguchi Method and Grey Relational Analysis Method
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 黃昌群
Chang-Chiun Huang
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 140
中文關鍵詞: 太陽能光電熱複合模組相變化材料奈米流體最佳化田口方法灰關聯分析法TRNSYS
外文關鍵詞: Photovoltaic/thermal System, Phase change material, Nanofluid, Optimization, Taguchi method, Grey relational analysis, TRNSYS
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是對奈米流體-相變化-太陽能光電熱複合模組進行製程參數最佳化。本研究在傳統太陽能光電熱(Photovoltaic/thermal system,PV/T)模組的基礎上,加入相變化材料(Phase change material,PCM)以及奈米流體以提高PV/T模組的發電效率與儲熱效率。同時利用田口方法與灰關聯分析法,探究模組的十個參數:PCM材料、工作流體種類、工作流體質量流率、模組傾斜角度、集熱管數量、集熱管徑、方位角、水箱容積/集熱板面積(Volume to area,V/A)比、集熱板厚度、集熱板材料對系統的發電效率與儲熱效率的影響,並找到一組最佳的參數配置。
本研究主要使用TRNSYS模擬軟體對PV/T複合模組進行建模分析。選擇實驗需要的相變化材料(有機石蠟)與奈米流體(CuO、Al2O3奈米流體)後,首先建立TRNSYS模型,並利用田口方法(Taguchi method)進行實驗規劃,配置L36(21×39)直交表進行實驗,配合主效果分析與變異數分析,探究每個控制因子對兩個品質特性(發電效率與儲熱效率)的影響,進而得到兩個單品質最佳化參數配置。再利用多品質最佳化理論之灰關聯分析法(Grey relational analysis),得到多品質最佳化的參數配置,最後按照此最佳化配置進行實際驗證確認結果的可靠程度。
結果顯示,傳統PV/T模組的發電效率為12.74%,儲熱效率為34.06%,而經本研究最佳化後,奈米流體-相變化-太陽能光電熱複合模組的發電效率為14.958%, 儲熱效率為64.764%。相較於傳統PV/T系統,發電效率提高了2.218%,儲熱效率提高了30.704%。單品質與多品質的最佳化參數組合的確認實驗結果均落在95%信賴區間之內,證明最佳化結果可靠並具有可再現性,同時實際驗證與模擬實驗的結果誤差皆小於5%,證明模擬測試具有可信度。


This study is to optimize the nanofluid-phase change-photovoltaic/ thermal system. In this study, phase change material (PCM) and nanofluid are added to the conventional photovoltaic/thermal system (PV/T) to improve the electrical efficiency and heat storage efficiency of PV/T system. Taguchi method and gray relational analysis are used to find the effects of ten parameters of the system: PCM, fluid type, mass flow rate, module tilt angle, number of collector tubes, collector tube diameter, azimuth, Volume to Area (V/A) ratio, collector plate thickness, and collector plate material on the electrical efficiency and heat storage efficiency of the system, and to find a best parameter combination.
In this study, the PV/T system is modeled and analyzed by TRNSYS. After selecting the phase change material (organic paraffin) and nanofluid (CuO, Al2O3) ,build TRNSYS model and design the experiment by Taguchi method. Set up L36 (21×39) orthogonal array for experiment, combined with main effect analysis and analysis of variance to find the effect of various set up parameters on two single quality characteristic(electrical efficiency and heat storage efficiency), and to obtain various single quality characteristic optimized setup parameter combinations. Considering electrical efficiency and heat storage efficiency multiple quality characteristics optimization, gray relational analysis is used to find out the multiple quality characteristics optimized setup parameter combinations. Finally, practical validation is implemented according to multiple quality characteristics optimized setup parameter combinations.
It is observed that the electrical efficiency of the conventional PV/T module is 12.74% and the heat storage efficiency is 34.06%. After the optimization of this study, the electrical efficiency of the nanofluid-phase change-photovoltaic/thermal system is 14.958% and the heat storage efficiency is 64.764% . Compared with the conventional PV/T system, the electrical efficiency is increased by 2.218% and the heat storage efficiency is increased by 30.704%. Single quality characteristic and multiple quality characteristics optimized setup paramter combinations of simulation test are in 95% confidence interval,the maximum error of electrical efficiency and heat storage efficiency and of practical validation and simulation test is less than 5%,simulation test has reliability.

摘要 I Abstract III 致謝 V 目錄 VI 圖索引 IX 表索引 X 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 太陽能光電熱(PV/T)系統 3 1.2.2 相變化材料 7 1.2.3 奈米流體 10 1.2.4 製程參數最佳化理論 12 1.3 研究動機與目的 15 1.4 論文架構 19 第2章 研究模組以及材料介紹 22 2.1 太陽能光電熱能複合模組介紹 22 2.1.1. 太陽能光電模組介紹 22 2.1.2. 太陽能光電熱複合模組介紹 26 2.2 PCM材料介紹 28 2.3 奈米流體材料介紹 32 2.4 TRNSYS軟體介紹 37 第3章 研究方法介紹 45 3.1 田口方法 45 3.1.1 參數設計與因子效應 47 3.1.2 直交表 48 3.1.3 訊號雜訊比 50 3.1.4 主效果分析 52 3.1.5 變異數分析 54 3.1.6 信賴區間 58 3.2 灰關聯分析法 61 3.2.1 灰關聯分析概述 62 3.2.2 灰關聯度的特性 63 3.2.3 灰關聯度的計算 64 3.3 最佳化分析流程 69 4.1 選擇品質特性 71 4.2 控制因子及其水準值 72 4.3 直交表構建 75 4.4 實驗流程 77 第5章 結果與討論 81 5.1 TRNSYS模擬模型準確性確認實驗 81 5.2 單品質最佳化分析結果 83 5.2.1 PV/T複合模組發電效率最佳化分析 83 5.2.2 PV/T複合模組儲熱效率最佳化分析 92 5.3 多品質最佳化分析結果 99 5.4 結果討論與比對 108 第6章 結論與未來展望 112 6.1 實驗結論 112 6.2 未來展望 114 參考文獻 117

[1] N. Wood, K. Roelich, “Tensions,capabilities and justice in climate change mitigation of fossil fuels.”, Energy Research & Social Science, vol. 52, June 2019, pp. 114-122(2019).
[2] R.S. Shivalkar, H.T. Jadhav, “Feasibility study for the net metering implementation in rooftop solar pv installations across reliance energy consumers”, Power and Computing Technologies (2015).
[3] S. Vaclav, “Energy at the crossroads”, Global Perspectives and Uncertainties (2015).
[4] D. Oliva, E. Cuevas, “Parameter identification of solar cells using artificial bee colony optimization”, Energy, vol. 72, pp. 93-102 (2014).
[5] 「2015-2016年產業技術白皮書」,經濟部技術處,中華民國(2016)。
[6] S. Gorjian, H. Ebadi, M. Trommsdorff, H. Sharon, M. Demant, “The advent of modern solar-powered electric agricultureeal machinery: A solution for sustainable farm operations”, Journal of Cleaner Production, vol. 292, pp. 126030(2021).
[7] A.A. Bayod Rújula,“Sistemas Fotovoltaicos”,Prensas Universitarias de Zaragoza, Zaragoza (2009).
[8] R. Margolis, D. Feldman, D. Boff, “Solar Industry Update”, National Renewable Energy Laboratory (2019).
[9] E. Skoplaki, J.A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations”, Solar Energy, vol. 83, Issue 5, pp. 614-624(2009).
[10] J.C. Mojumder, H.C. Ong, W.T. Chong, N. Izadyar, S. Shamshirband, “The intelligent forecasting of the performances in PV/T collectors based on soft computing method”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 1366-1378(2017).
[11] M. Wolf, “Performance analyses of combined heating and photovoltaic power systems for residences”, Energy Convers, vol. 16, pp. 79-90(1976).
[12] R. Daghigh, A. Ibrahim, G.L. Jin, M.H. Ruslan, K. Sopian, “Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors”, Energy Convers Manag, vol. 52, pp. 1741-1747(2011).
[13] K. Sopian, H.T. Liu, S. Kakac, T.N. Veziroglu, “Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems”, Energy Convers Manag, vol. 41, pp. 353-365 (2000).
[14] B.J. Huang, T.H. Lin, W.C. Hung, F.S. Sun, “Performance evaluation of solar photovoltaic/thermal systems”,Solar Energy, vol. 70, pp. 443-448(2001).
[15] C. Rossi, L. A. Tagliafico, F. Scarpa and V. Bianco, “Experim-ental and numerical results from hybrid retrofitted photovoltaic panels”, Energy Conversion and Management, vol.76, pp.634-644(2013).
[16] F. Shan, L. Cao, G. Fang, “Dynamic performances modeling of a photovoltaic–thermal collector with water heating in buildinggs”, Energy and Buildings, vol. 66, pp. 485-494(2013).
[17] B. Zhang, J. Lv, H. Yang, T. Li, S. Ren, “Performance analysis of a heat pipe PV/T system with different circulation tank capacities”,Applied Thermal Engineering, vol. 87, pp. 89-97(2015).
[18] P. Xu, X. Zhang, J. Shen, X. Zhao, W. He and D. Li, “Parallel experimental study of a novel superthin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system”, Energy Reports, vol. 1, pp. 30-35(2015).
[19] H. Chen, L. Zhang, P. Jie, Y. Xiong, P. Xu, H. Zhai, “Performance study of heat-pipe solar photovoltaic/thermal heat pump system”, Applied Energy, vol. 190, pp. 960-980(2017).
[20] R. Tripathi, G.N. Tiwari, T.S. Bhatti, V.K. Dwivedi,“2-E (Energy-Exergy) for partially covered concentrated photovoltaic thermal (PVT) collector”, Energy Procedia, vol. 142, pp. 616-623(2017).
[21] C.F. Kuo, J.M. Liu, M.L. Umar, W.L. La, C.Y. Huang and S.S. Syu,“The photovoltaic-thermal system parameter optimization design and practical verification”, Energy Conversion and Management, vol. 180, pp. 358-371(2019).
[22] J.G. Ahn, J.S. Yu, F.E. Boafo, J.H. Kim, J.T.. Kim, “Simulation and Performance Analysis of Air Type PVT Collector with Interspaced Baffle-PV Cell Design”, Energies, vol. 14, pp. 5372(2021).
[23] O. Zogou, H. Stapountzis, “Experimental validation of an improved concept of building integrated photovoltaic panels” Renewable Energy, vol. 36, Issue 12, pp. 3488-3498(2011).
[24] A.K. Pandey, M.S. Hossain, V.V. Tyagi, N. Abd Rahim, J.A.L. Selvaraj, A. Sari, “Novel approaches and recent developments on potential applications of phase change materials in solar energy”, Renewable and Sustainable Energy Reviews, vol. 82, pp. 281-323 (2018).
[25] J. Stultz, L. Wen, “Thermal performance testing and analysis of photovoltaic modules in natural sunlight”, LSA Task Report., vol. 5101, pp. 31(1977).
[26] A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics”, Solar Energy, vol. 84, pp. 1601-1612(2010).
[27] E. Yin, Q. Li, D. Li, Y. Xuan, “Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials”, Energy, vol. 169, pp. 172-185 (2019).
[28] T. Cui, Y. Xuan, E. Yin, Q. Li, D. Li, “Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials”, Energy, vol. 122, pp. 94-102.
[29] J. Park, T. Kim, S.B. Leigh, “Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions”, Solar Energy, vol. 105, pp. 561-574(2014).
[30] S. Sharma, A. Tahir, K. Reddy, T.K. Mallick, “Performance enhancement of a building-integrated concentrating photovoltaic system using phase change material”, Solar Energy Materials and Solar Cells, vol. 149, pp. 29-39 (2016).
[31] M. Carmona, A.P. Bastos,J.D. García, “Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module”, Renewable Energy, vol. 172,pp. 680-696(2021).
[32] M.T. Chaichana, H.A. Kazemb, A.H.A.Al-Waeli, K. Sopianc, “ Controlling the melting and solidification points temperature of PCMs on the performance and economic return of the water-cooled photovoltaic thermal system”, Solar Energy , vol. 224, pp. 1344-1357(2021).
[33] S.U.S. Choi, “Developments and applications of non-Newtonian flows”, ASME, pp. 231; 99–102(1995).
[34] H. Tyagi, P. Phelan, R. Prasher, “Predicted efficiency of a lowtemperature nanofluid-based direct absorption solar collector”, Journal of Solar Energy Engineering, vol. 131, pp. 041004(2009).
[35] M. Sardarabadi, M. Passandideh-Fard, S.Z. Heris, “Perimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)”, Energy, vol. 66,pp. 1-9(2014).
[36] Y. Khanjari, F. Pourfayaz, A.B. Kasaeian, “Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system”, Energy Conversion and Management,vol. 122, pp. 263-278(2016).
[37] A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A.Ibrahim, SohifMat, M.H. Ruslana, “Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experi-mental study”, Energy Conversion and Management,vol. 151, pp. 693-708(2017).
[38] H.A.M. Alsalame, J.H. Lee, G.H. Lee, “Performance Evaluation of a Photovoltaic Thermal (PVT) System Using Nanofluids”, Energies, vol. 14, pp. 301(2021).
[39] Akbara, G. Najafi, S. Gorjian, A. Kasaeian, M. Mazlan, “Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: Indoor experimental tests and multi-objective optimization”, Sustainable Energy Technologies and Assessments,vol. 46, pp. 101276(2021).
[40] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, vol. 50, pp. 19-28(2014).
[41] J.L. Deng, “Introduction to Grey System Theory” Journal of Grey System, vol. 1, No. 1, pp. 1-24(1989).
[42] W.L. Liu, S.H. Hsieh, W.J. Chen, P.I. Wei, J.H. Lee, “Synthesis of the CuInSe2 thin film for solar cells using the electrodeposition technique and Taguchi method”, International Journal of Minerals, Metallurgy and Materials, vol. 16, pp. 101-107 (2009).
[43] S.I. Jun, T.E. McKnight, M.L. Simpson, P.D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio frequency sputtering”, Thin Solid Films, vol.476, pp.59-64 (2005).
[44] C.B. Chen, C.T. Lin, C.W. Chang, C.P. Ho, “Grey relation for solving multi-quality characteristics problems of Taguchi methods”, The Journal of Technology Transfer, vol. 15, pp. 25-33 (2000).
[45] Y.S. Tarng, S.C. Juang, C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing”, Journal of Materials Processing Technology, vol. 128, pp. 1-6(2002).
[46] Y.M. Chiang, H.H. Hsieh, “The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing”, Computers & Industrial Engineering, vol. 56, pp. 648-661 (2009).
[47] C.F. Kuo, H.M. Tu, S.W. Liang, W. L. Tsai, “Optimization of Microcrystalline Silicon Thin Film Solar Cell Isolation Processing Parameters Using Ultraviolet Laser”, Optics&Laser Technology, vol. 42 ,No. 6, pp. 945-955(2010)).
[48] C.F.J. Kuo, T.L. Su, P.R. Jhang, C.Y. Huang and C.H. Chiu, “Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing”, Energy, vol. 36,pp. 3554-3562(2011).
[49] C.F. Kuo, W.L. Lan, Y.C. Chang and K.W. Lin, “The preparation of organic lightemitting diode encapsulation barrier layer by lowtemperature plasmaenhanced chemical vapor deposition: a study on the SiOxNy film parameter optimization”, Journal of Intelligent Manufacturing, pp. 1-13(2014).
[50] C.F. Kuo, P.C. Yang, M.L. Umar, W.W. Lan, “A bifacial photovoltaic thermal system design with parameter optimization and performance beneficial validation”, Applied Energy, vol. 247, pp. 335-349(2019).
[51] A. Kazemian, A. Paecheforosh, A. Salari, T. Ma, “Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis”, Solar Energy, vol. 215, pp. 492-507(2021).
[52] “The Photovoltaic Effect – Introduction”, Photovoltaics.sandia, gov (2001-02-01), Retrieved on 2010-12-12.
[53] A. Hasan, S.J. McCormack, “Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates”, Solar Energy, vol. 115, pp. 264-276(2015).
[54] Makki, S. Omer, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance”, Renewable and Sustainable Energy Reviews, vol. 41, pp. 658-684(2015).
[55] M. C. Browne, B. Norton, “Phase change materials for photovoltaic thermal management”, Renewable and Sustainable Energy Reviews, vol. 47, pp. 762-782(2015).
[56] G. Ciulla, V. Lo Brano, “A comparison of different onediode models for the representation of I-V characteristic of a PV cell”, Renewable and Sustainable Energy Reviews, vol. 32, pp. 684-696(2014).
[57] Hasan, S. J. McCormack, “Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates”, Solar Energy, vol. 115, pp. 264-276(2015).
[58] J. Kern, MC. Russell, “Combined photovoltaic and thermal hybrid collector system.’’ Proceeding of the 13th IEEE PV specialist conference, pp. 1153-1157(1979).
[59] S.A. Hamid, M.Y. Othman, “An overview of photovoltaic thermal combination (PV/T combi) technology”, Renewable and Sustainable Energy Review, vol. 38, pp. 212-222.(2014).
[60] ROSA, J. Luiz, R. Alain, M.B. Sliva, B.C. Alberto, P.M. Pedro, “Electrodeposition of copper on titanium wires: Taguchi experimental design approach”, Journal of Materials Processing Technology, vol. 209, pp. 1181-1188(2009).
[61] A. Gaur, C. Menezo, S.G. Julien, “Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium”, Renewable Energy, vol. 109, pp. 168-187(2017).
[62] X. Han, X. Zhao, X. Chen, “Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling”, Renewable Energy, vol. 162, pp. 55-70(2020).
[63] S.Y. Wu, Q.L. Zhang, L. Xiao, F.H. Guo, “A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluat-eon”, Energy Build, vol.4 3, pp. 3558-3567(2011).
[64] K. Moradi, M.A. Ebadian, C.X. Lin, “A review of PV/T technologies: effects of control parameters”, International Journal of Heat and Mass Transfer, vol. 64, pp. 483-500(2013).
[65] A. Tiwari, M.S. Sodha, “Performance evaluation of solar PV/T system: an experimental validation”, Solar Energy, vol. 80(7), pp. 751-759(2006).
[66] Y.P. Chang, “Optimal design discrete-value tilt angle of PV using sequential neural-network approximation and orthogonal array”, Expert Systems with Applications, vol. 36, pp. 6010-6018(2009).
[67] Y. Maleki, F. Pourfayaz, M. Mehrpooya, “Transient optimization of annual performance of a photovoltaic thermal system based on accurate estimation of coolant water temperature: A comparison with conventional methods”, Case Studies in Thermal Engineering, vol. 28, pp. 101395(2021).
[68] Q. Yu, X. Chen, H. Yang, “Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review”, Renewable and Sustainable Energy Reviews, vol.149, pp.111313(2021).
[69] M. Hosseinzadeh, M. Sadarabadi. M. P. Fard, “Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material”, Energy, vol. 147, pp. 636-647(2018).
[70] Q. Yu, X. Chen, H. Yang, “Research progress on utilization of phase change materials in photovoltaic/thermal systems:A critical review”, Renewable and Sustainable Energy Reviews, vol.149, pp.111313(2021).
[71] A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, “Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors”, Energy Conversion and Management, vol. 148, pp. 963-973(2017).
[72] 田口方法: 品質設計的原理與實際 第四版 Taguchi Methods: Principles and Practices of Quality Design.
[73] 灰色系統:理論與應用,鄧聚龍,高立圖書有限公司,2003.

無法下載圖示 全文公開日期 2027/02/07 (校內網路)
全文公開日期 2027/02/07 (校外網路)
全文公開日期 2027/02/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE