簡易檢索 / 詳目顯示

研究生: 涂羽葳
Yu-Wei Tu
論文名稱: 含咔唑及四苯乙烯高分子之合成與結構鑑定
Synthesis and Characterization of Carbazole and Tetraphenylethene Based Polymers
指導教授: 游進陽
Chin-Yang Yu
口試委員: 陳志堅
堀江正樹
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 117
中文關鍵詞: 共聚物四苯乙烯咔唑聚集誘導發光雙通道螢光反應
外文關鍵詞: copolymers, tetraphenylethene, carbazole, aggregation-induced emission, dual channel fluorescence response
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

咔唑為一具有聚集導致螢光焠滅 (ACQ) 性質之螢光發色團,相較於傳統螢光分子咔唑,四苯乙烯具有聚集誘導發光 (AIE) 之特性。本論文主要探討2,7位置耦合咔唑及四苯乙烯共軛共聚物之合成及其各項性質研究。本實驗選用鈀金屬催化之鈴木耦合反應作為高分子聚合反應,並選用疏水長碳鏈及親水含氧碳鏈作為咔唑單體9號位之取代基,設計合成出含有不同比例之咔唑及四苯乙烯共聚高分子。當共聚物之四苯乙烯含量大於50 %時,能達到在稀釋溶液中只發出微弱或不具螢光而在高濃度聚集態或固態時產生高強度螢光的性質,而高分子側鏈也會對高分子聚集程度產生影響進而影響其光學性質。在咔唑及四苯乙烯等量共聚物中,具烷類取代基之共聚物因排列規則利於堆疊聚集故在聚集態時量子產率較具含氧取代基之共聚物高,前者為26 % 後者為8 %。當四苯乙烯在高分子中含量為25 %時,有些高分子會顯現雙通道螢光反應,且在溶劑及聚集態中皆保有相近之量子產率。透過咔唑分子與具多苯環結構的四苯乙烯共聚合,有效提升了高分子之熱穩定性。由循環伏安法測得的結果顯示,具有含氧取代基之高分子擁有較低的能隙,相反的,隨著四苯乙烯的含量上升,高分子的能隙也會跟著變大。


Carbazole is a typical chromophore which shows aggregation-caused quenching (ACQ) effect, whereas tetraphenylethylene (TPE) appears aggregation induced emission (AIE) characteristics. In this thesis, series of polymers containing different ratios of 2,7-carbazoles and TPEs were designed and synthesized by palladium-catalyzed Suzuki Miyaura cross-coupling reaction. The hydrophobic (decyl) and hydrophilic (trioxadecyl) chains were chose to substituted at a 9-position of the 2,7-carbazoles. By introducing an AIE luminogen into ACQ material, the carbazole-TPE copolymers successfully showed high emission in solid state and aggregated state when the composition of TPE in polymers reached over 50 %. The side group was certified to have an impact on the formation of aggregation and optical properties. For carbazole-TPE equivalent copolymers, alkyl substituted polymer showed more aggregated than the trioxadecyl substituted one. The former exhibited higher quantum yield (25.5 %) than the later one (7.5 %) in aggregated state. When the TPE content approached to 25 %, some polymers showed dual channel fluorescence response (DCFR) and presented almost the same quantum yield in both solution and aggregated state. The thermal stabilities of polymers were increased by melding the multi-phenyl structure, TPE, onto the polymers. The results of cyclic voltammetry indicated that the trioxadecyl substituted polymers exhibit lower band gap, conversely, the increasing TPE content leads to higher band gap.

Abstract I 中文摘要 II Acknowledgements III Table of Content IV Chapter 1. Introduction and Aims 1 1.1 Introduction to -Conjugated Polymers 2 1.2 Introduction to Polycarbazoles 3 1.3 Introduction to Aggregation Caused Quenching 7 1.4 Introduction to Aggregation-induced Emission 9 1.5 Introduction to Tetraphenylethene 12 1.5.1 Tetraphenylethene 12 1.5.2 Tetraphenylethene and Its Derivatives 13 1.6 Aim of Project 16 1.7 References 17 Chapter 2. Synthesis and Characterization 21 2.1 Synthesis and Characterization of Carbazole Derivatives 22 2.1.1 Synthesis of Carbazole Derivatives 22 2.1.2 Characterization of Carbazole Derivatives 26 2.2 Synthesis and Characterization of Tetraphenylethene Derivatives 40 2.2.1 Synthesis of Tetraphenylethene Derivatives 40 2.2.2 Characterization of Tetraphenylethene Derivatives 41 2.3 Synthesis and Characterization of Polymers 46 2.3.1 Synthesis of Polymers 46 2.3.2 Characterization of Polymers 51 2.4 Experimental 59 2.4.1 Materials and Instrumentation 59 2.4.2 Synthesis of 4,4-dibromo-2-nitrobiphenyl (1) 60 2.4.3 Synthesis of 2,7-dibromo-9H-carbazole (2) 61 2.4.4 Synthesis of N-decyl-2,7-dibromocarbazole (3) 62 2.4.5 Synthesis of 2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (TEG-OTS) (4) 62 2.4.6 Synthesis of 2,7-dibromo-9-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)carbazole (5) 63 2.4.7 Synthesis of N-decyl-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)carbazole (6) 64 2.4.8 Synthesis of 9-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)carbazole (7) 65 2.4.9 Synthesis of (E,Z) 1,2-bis(4-bromophenyl)-1,2-diphenylethene (8) 66 2.4.10 Synthesis of (E,Z) 1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene (9) 67 2.4.11 Synthesis of Carbazole-Based Polymers (P1) (P2) (P3) 68 2.4.12 Synthesis of Carbazole-TPE Copolymers (P4) (P5) (P9) (P11) (P12) 69 2.4.13 Synthesis of Carbazole-TPE Copolymers (P6) (P7) (P8) (P10) 70 2.5 References 73 Chapter 3. Properties of P1-P5 75 3.1 Optical Properties of P1-P3 76 3.2 Optical Properties of P4-P5 80 3.4 Thermal Properties 83 3.5 Electrochemical Properties 85 3.6 References 88 Chapter 4. Properties of P6-P8 89 4.1 Optical Properties of P6-P8 90 4.3 Thermal Properties 94 4.4 Electrochemical Properties 95 4.5 References 97 Chapter 5. Properties of P9-P12 98 5.1 Optical Properties of P9-P12 99 5.3 Thermal Properties 103 5.4 Electrochemical Properties 104 5.5 References 107 Chapter 6. Conclusion 108

[1] H. Sirringhaus, N. Tessler, D. S. Thomas, P. J. Brown, R. H. Friend, Adv. Solid State Phys. 1999, 39, 101-110.
[2] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99-117.
[3] N. S. Baek, S. K. Hau, H. L. Yip, O. Acton, K. S. Chen, A. K. Y. Jen, Chem. Mater. 2008, 20, 5734-5736.
[4] A. J. Mozer, N. S. Sariciftci, C.R. Chimie 2006, 9, 568-577.
[5] C. J. Brabec, S. N. Sariciftci, Monatsh. Chem. 2001, 132, 421-431.
[6] M. C. Kevin, D. M. Michael, Chem. Mater. 2004, 16, 4533-4542.
[7] D. H. Charych, J. O. Nagy, W. Spevak, M. D. Bednarski, Science. 1993, 261, 585-588.
[8] T. Klingstedt, K. P. R. Nilsson, Biochim. Biophys. Acta. 2011, 1810, 286-296.
[9] D. T. McQuade, A. E. Pullen, T. M. Swage, Chem. Rev. 2000, 100, 2537-2574.
[10] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed. 1998, 37, 402- 428.
[11] M. T. Bernius, M. Inbasekaran, J. O'Brien, W. Wu, Adv. Mater. 2000, 12, 1737-1750.
[12] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature. 1990, 347, 539-541.
[13] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, A. J. Heeger, Phys. Rev. Lett. 1977, 39, 1098-1101.
[14] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, E. P. Woo, Appl. Phys. Lett. 1998, 73, 629-631.

[15] D. Sainova, T. Miteva, H. G. Nothofer, U. Scherf, I. Glowacki, J. Ulanski, H. Fujikawa, D. Neher, Appl. Phys. Lett. 2000, 76, 1810-1812.
[16] R. D. McCullough, Adv. Mater. 1998, 10, 93-116.
[17] A. Watanabe, S. Murakami, K. Mori, Y. Kashiwaba, Macromolecules, 1989, 22, 4231-4235.
[18] A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1994, 65, 103-116.
[19] J. V. Grazuleviciusa, P. Strohrieglb, J. Pielichowskic, K. Pielichowski, Prog. Polym. Sci. 2003, 28, 1297-1353.
[20] J. Li, C. Ma, J. Tang, C. S. Lee, S. Lee, Chem. Mater. 2005, 17, 615-619.
[21] J.-F. Morin, M. Leclerc, D. Ade`s, A. Siove, Macromol. Rapid Commun. 2005, 26, 761-778.
[22] S. T. Wellinghoff, Z. Deng, J. F. Reed, J. Racchini, Polym. Prepr. 1984, 25, 238-240.
[23] A. Siove, D. Adès, C. Chevrot and G. Froyer, Makromol. Chem. 1989, 190, 1361-1368.
[24] A. Siove, D. Adès, E. Ngbilo and C. Chevrot, Synth. Met. 1990, 38, 331-340.
[25] A. Siove, A. Aboulkassim, K. Faïd, D. Adès, Polym. Int. 1995, 37, 171-177.
[26] Z. B. Zhang, M. Fujiki, H.-Z. Tang, M. Motonaga, K. Torimistu, Macromolecules, 2002, 35, 1988-1990.
[27] J.-F. Morin, M. Leclerc, Macromolecules, 2001, 34, 4680-4682.
[28] M. Sonntag, P. Strohriegl, Chem. Mater. 2004, 16, 4736-4742.
[29] P.-L. T. Boudreault, S. Beaupréa, M. Leclerc, Polym. Chem. 2010, 1, 127-136.
[30] H. Wen, Z. Ge, Y. Liu, T. Yokozawa, L. Lu, X. Ouyang, Z.Tan, Eur. Polym J. 2013, 49, 3740-3743.

[31] L. Vacareanu, A.-M. Catargiu, M. Grigoras, High Perform Polym. 2015, 27, 476-485.
[32] F. Dumur, Org. Electron. 2015, 25, 345-361
[33] N. Leclerc, A. Michaud, K. Sirois, J.-F. Morin, M. Leclerc, Adv. Funct. Mater. 2006, 16, 1694-1704.
[34] F. Lombeck, H. Komber, A. Sepe, R. H. Friend, M. Sommer, Macromolecules, 2015, 48, 7851-7860.
[35] S. G. Hahm, T. J. Lee, D. M. Kim, W. Kwon, Y.-G. Ko, T. Michinobu, M. Ree, J. Phys. Chem. C, 2011, 115, 21954-21962.
[36] W. Li, M. Otsuka, T. Kato, Y. Wang, T. Mori, T. Michinobu, Beilstein J. Org. Chem. 2016, 12, 1401-1409.
[37] T. Förster, K. Kasper, Z. Physik. Chem. 1955, 59, 976-978.
[38] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
[39] Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361-5388.
[40] J. Wang, Y. Zhao, C. Dou, H. Sun, P. Xu, K. Ye, J. Zhang, S. Jiang, F. Li, Y. Wang, J. Phys. Chem. B 2007, 111, 5082-5089.
[41] B. T. Nguyen, J. E. Gautrot, C. Ji, P. L. Brunner, M. T. Nguyen, X. X. Zhu, Langmuir 2006, 22, 4799-4803.
[42] L. Chen, S. Xu, D. McBranch, D. Whitten, J. Am. Chem. Soc. 2000, 122, 9302-9303.
[43] P. N. Taylor, M. J. O'Connell, L. A. McNeill, M. J. Hall, R. T. Aplin, H. L. Anderson, Angew. Chem. Int. Ed. 2000, 39, 3456-3460.
[44] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740-1741.
[45] H. Wang, E. Zhao, J. W.Y. Lam, B. Z. Tang, Mater. Today, 2015, 18, 365-377.
[46] J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718-11940.
[47] Z. Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. 2012, 22, 23726-23740.
[48] W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma, B. Z. Tang, Adv. Mater. 2010, 22, 2159-2163.
[49] Z. Zhao, S. Chen, J. W. Y. Lam, P. Lu, Y. Zhong, K. S. Wong, H. S. Kwoka, B. Z. Tang, Chem. Commun. 2010, 46, 2221-2223.
[50] W. L. Gong, B. Wang, M. P. Aldred, C. Li, G. F. Zhang, T. Chen, L. Wang, M. Q. Zhu, J. Mater. Chem. C 2014, 2, 7001-7012.
[51] J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qina, Z. Li, J. Mater. Chem. 2012, 22, 2478-2484.
[52] R. Hu, J. L. Maldonado, M. Rodriguez, C. Deng, C. K. W. Jim, J. W. Y. Lam, M. M. F. Yuen, G. Ramos-Ortiz, B. Z. Tang, J. Mater. Chem. 2012, 22, 232-240.
[53] J. Shi, Y. Wu, S. Sun, B. Tong, J. Zhi, Y. Dong, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 229-240.
[54] B. Yao, J. Mei, J. Li, J. Wang, H. Wu, J. Z. Sun, A. Qin, B. Z. Tang, Macromolecules, 2014, 47, 1325-1333.
[55] W. Dong, T. Fei, A. Palma-Cando, U. Scherf, Polym. Chem. 2014, 5, 4048-4053.
[56] B. He, S. Ye, Y. Guo, B. Chen, X. Xu, H. Qiu, Z. Zhao, Sci. China. Chem., 2013, 56, 1221-1227.
[57] J. Li, X. Han, Q. Bai, T. Shan, P. Lu, Y. Ma, J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 707-715.

無法下載圖示 全文公開日期 2023/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE