簡易檢索 / 詳目顯示

研究生: 林政億
JENG-YI LIN
論文名稱: 偏置半圓錐流動控制器對圓柱與壁面交界流之影響
Effect of Asymmetric Arrangement of an Upstream Semi-cone on Flow Characteristics around Juncture of Circular Cylinder and Flat Plate
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 339
中文關鍵詞: 圓柱半圓錐旋轉偏移角馬蹄形渦漩
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在一般情況之下,橋墩與河床交界處上游會產生一、二或三個馬蹄形渦漩,對河床產生刮沙作用,最終導致橋墩坍塌。過去的研究顯示,使用適當設計的半圓錐流動控制器安置於交界處上游可消除圓柱上游的馬蹄形渦漩,降低壁面剪應力,因而改善馬蹄形渦漩對圓柱根部的刮沙效應。本研究在一拖曳式水槽中,安裝一支垂直於一平板之圓柱,以模擬真實河道中水流對橋墩根部之沖刷情況。將一半圓錐流動控制器安置於圓柱與平板交界處之上游,改變安裝角度,使用實驗方法探討受半圓錐控制之圓柱與壁面交界處上游的流場特徵,討論此半圓錐流動控制器對圓柱與平板交界處刮沙效應的抑制效果。使用雷射光頁輔助質點軌跡流動可視化技術觀測圓柱與壁面交界處上游垂直面與水平面的流場特徵行為,再以質點影像測速儀量測速度場,轉換成流線,並計算壁面剪應力、紊流強度以及紊流擾動動能。當半圓錐的長度大於1倍圓柱直徑時,在半圓錐旋轉偏移角與雷諾數的域面上,圓柱與壁面上游交界處的流場呈現四種特徵模態,分別為「順向流動」、「逆向流動」、「渦旋」及「不穩定渦旋」。順向流動模態時,靠近壁面處,流體呈現順向流動行為;逆向流動模態時,靠近壁面處,流體呈現逆向流動行為;渦漩模態的流場特徵為數目一、二或三的馬蹄形渦漩;不穩定渦漩模態的流場特徵呈現數目不固定的馬蹄形渦旋。在順向流動與逆向流動兩種模態時,壁面剪應力不會出現特別大的數值;當圓柱上游形成馬蹄形渦漩時,相對於馬蹄形渦漩處,壁面會產生相當大的剪應力,因此對河床產生刮沙作用。當雷諾數小於4500,半圓錐的旋轉偏移角小於10度時,四種流動模態的區域範圍會與旋轉偏移角等於0度時相近,意即當旋轉偏移角小於10度時對流動的控制效應不會減弱;當旋轉偏移角大於10度時,順向流動與逆向流動模態所佔的範圍變窄,意即流動控制的有效區域變小。當雷諾數大於4500,旋轉偏移角小於2度時,流場呈現順向流動模態,意即流動控制仍舊有效;旋轉偏移角大於2度時,流場呈現不穩定渦漩模態,意即流動控制器失去效用。


The upstream area around the juncture of a pier and river bed usually suffered from the scour effect induced by horse-shoe vortices. Present work employed a circular cylinder mounted normal to a flate plate to simulate the juncture of the pier and rever bed. The circular cylinder and flate plate were immersed in a towing water tank to perform experimental studies. A semi-cone flow controller was installed at the upstream corner of the juncture to modulate the flow status. The laser light-sheet assisted particle-tracking flow visualization technique was used for flow visualization. A particle image velocimeter (PIV) was applied to measure the velocity field. The streamlines, turbulence intensity, and wall shear stresses were obtained by processing the measured velocity data. At the semi-cone length to circular diameter ratio greater than unity, depending on the semi-cone rotation angle and Reynolds number, the flow around the upstream area of the juncture displayed various characteristic modes: forward flow, reverse flow, vortical flow, and unsteady flow. The wall shear stress presented relatively small values at the forward and reverse flow modes. However, the wall shear stress revealed significantly large values around the locations corresponding to where the vortices appeared at the vortical flow modes. At Reynolds numbers less than 4500 and semi-cone rotation angles smaller than 10o, the regimes of the characteristic flow modes were similar to those of the flow at zero semi-cone rotation angle, i.e., small semi-cone rotation angle would not deteriate the effect of flow control. At semi-cone rotation angles greater than 10o, the regimes of the forward and reverse flows reduced, which indicated a reduncion in effective flow control. At Reynolds numbers greater than 4500 and semi-cone rotation angles smaller than 2o, forward flow mode was observed, indicating an effective flow control. However, at Reynolds numbers greater than 4500 and semi-cone rotation angles larger than 2o, unsteady vortical flow mode appeared and therefore the flow control became ineffective.

摘要 i Abstract ii 致謝 iii 目錄 iv 符號索引 ix 表圖索引 x 第一章 緒論 1 1. 1 研究動機 1 1. 2 文獻回顧 2 1.2. 1 橋墩沖刷相關研究 2 1.2. 2 馬蹄型渦流相關研究 3 1.2. 3 前期研究 5 第二章 實驗設備、儀器與方法 6 2. 1 實驗設備 6 2.1. 1 拖曳式水槽 6 2.1. 2 圓柱與壁面模型 6 2. 2 半圓錐控制法 7 2. 3 水槽儀器控制方法 7 2.3. 1 馬達控制器 7 2.3. 2 觸發訊號控制 8 2. 4 實驗儀器與方法 8 2.4. 1 雷射光頁 9 2.4. 2 數位相機 9 2.4. 3 偏光鏡 9 2.4. 4 無線定時快門線 9 2.4. 5 質點特性分析 10 2.4. 6 質點軌跡流場觀察法(PTFV) 10 2.4. 7 質點影像速度儀 11 第三章 圓柱與壁面交接處上游的流場特徵行為 17 3. 1 圓柱與壁面交界處上游垂直面流場特徵 17 3.1. 1 圓柱與壁面交界處上游垂直面隨時間衍化之可視化 17 3.1. 2 圓柱與壁面交界處上游垂直面之流場特徵模態 20 3.2. 1 圓柱與壁面交界處上游垂直面受L/D = 0.3, θ = 0°半圓錐控制隨時間衍化之可視化 22 3.2. 2 圓柱與壁面交界處上游垂直面受L/D = 0.3, θ = 15°半圓錐控制隨時間衍化之可視化 25 3.2. 3 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 0°半圓錐控制隨時間衍化之可視化 28 3.2. 4 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 5°半圓錐控制隨時間衍化之可視化 29 3.2. 5 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 10°半圓錐控制隨時間衍化之可視化 31 3.2. 6 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 15°半圓錐控制隨時間衍化之可視化 33 3.2. 7 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 30°半圓錐控制隨時間衍化之可視化 36 3. 3 圓柱與壁面交界處上游垂直面流場特徵模態分區 39 3. 4 圓柱與壁面交界處上游水平面受半圓錐控制之流場模態特徵 39 3.4. 1 圓柱與壁面交界處上游水平面受L/D = 1.2, θ = 5°,半圓錐控制隨時間衍化之可視化 40 3.4. 2 圓柱與壁面交界處上游水平面受L/D = 1.2, θ = 15°半圓錐控制隨時間衍化之可視化 41 3.4. 3 圓柱與壁面交界處上游水平面受L/D = 1.2, θ = 30°半圓錐控制隨時間衍化之可視化 45 第四章 圓柱與壁面交界處上游流場特徵模態的平均速度場 48 4. 1 圓柱與壁面交界處上游垂直面之量化流場特徵 48 4.1. 1 圓柱與壁面交界處上游垂直面之速度與流線圖 48 4.1. 2 圓柱與壁面交界處上游垂直面之流場拓墣分析 52 4. 2 圓柱與壁面交界處上游垂直面受半圓錐控制之量化流場模態特徵 54 4.2. 1 圓柱與壁面交界處上游垂直面受L/D = 0.3, θ = 15°半圓錐控制之速度與流線圖 54 4.2. 2 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 0°半圓錐控制之速度與流線圖 57 4.2. 3 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 5°半圓錐控制之速度與流線圖 59 4.2. 4 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ =10°半圓錐控制之速度與流線圖 61 4.2. 5 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ =15°半圓錐控制之速度與流線圖 64 4.2. 6 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ =30°半圓錐控制之速度與流線圖 67 4.2. 7 圓柱與壁面交界處上游垂直面之x方向紊流強度分布圖 70 4.2. 8 圓柱與壁面交界處上游垂直面之y方向紊流強度分布圖 77 4.2. 9 圓柱與壁面交界處上游垂直面之紊流擾動動能分布圖 83 4. 3 圓柱與壁面交界處上游水平面受半圓錐控制之量化流場特徵 89 4.3. 1 圓柱與壁面交界處上游水平面受L/D = 1.2, θ = 5°,半圓錐控制之速度與流線圖 89 4.3. 2 圓柱與壁面交界處上游水平面受L/D = 1.2, θ = 15°,半圓錐控制之速度與流線圖 90 4.3. 3 圓柱與壁面交界處上游水平面受L/D = 1.2, θ = 30°,半圓錐控制之速度與流線圖 92 第五章 圓柱與壁面交界處上游的剪應力特性 95 5. 1圓柱與壁面交界處上游垂直面受半圓錐控制之剪應力分佈 95 5.1. 1 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 0°半圓錐控制之剪應力分佈 95 5.1. 2 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 5°半圓錐控制之剪應力分佈 98 5.1. 3 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 10°半圓錐控制之剪應力分佈 100 5.1. 4 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 15°半圓錐控制之剪應力分佈 102 5.1. 5 圓柱與壁面交界處上游垂直面受L/D = 1.2, θ = 30°半圓錐控制之剪應力分佈 104 第六章 結論與建議 107 6. 1 結論 107 6. 2 建議 108 參考文獻 110

[1] 周郁芳、陳志明、賴桂文、林永敏:「八八水災橋梁受損實例探討」,水利技師工會聯合資訊網,水利會訊,會訊第十三期,台灣,中華民國,2010。
[2] 陳賜賢:「河川橋梁破壞原因探討—以莫拉克談風雙園大橋為例」,水利技師工會聯合資訊網,水利會訊,會訊第十四期,台灣,中華民國,2011。
[3] Dargahi, B., “Controlling mechanism of local scouring,” Journal of Hydraulic Engineering, Vol. 116, No. 10, 1990, pp. 1197-1214
[4] Ahmed, F. and Rajaratnam, N., ”Flow around bridge piers,” Journal of Hydraulic Engineering, Vol. 124, No. 3, 1998, pp. 288-300.
[5] Bruce, W. M. and Arved, J. R., ” Flow characteristics in local scour at bridge piers,” Journal of Hydraulic Research, Vol. 15, No. 4, 1977, pp. 373-380.
[6] Melville, B.W. and Chiew, Y. M., “Time scale for local scour at bridge piers,” Journal of Hydraulic Engineering, Vol. 125, No. 1, 1999, pp. 59-65.
[7] Baker, C. J., “The laminar horseshoe vortex,” Journal of Fluid Mechanics, Vol. 95, Part 2, 1979, pp. 347-367.
[8] Baker, C. J., “The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, No. 3, 1985, pp. 263-274.
[9] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
[10] Chou, J. H. and Chao, S. Y., ” Branching of a horseshoe vortex around surface-mounted rectangular cylinders,” Experiments in Fluids, Vol. 28, No. 5, 2000, pp. 394-402
[11] Simpson, R.L., “Junction flows,” Annual Review of Fluid Mechanics, Vol. 33, 2001, pp. 415-443.
[12] Wei, Q. D., Cheng, G., and Du, X. D., “An experimental study on the structure of juncture flows,” Journal of Visualization, Vol. 3, No. 4, 2001, pp. 341-348.
[13] Sumner, D., Heseltine, J. L., and Dansereau, O. J. P., “Wake structure of a finite circular cylinder of small aspect ratio,” Experiments in Fluids, Vol. 37, No. 5, 2004, pp. 720-730.
[14] Pattenden, R. J., Turnock, S. R., and Zhang, X., “Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane,” Experiments in Fluids, Vol. 39, No. 1, 2005, pp. 10-21.
[15] Wei, Q. D., Wang, J. M., Chen, G., Lu, Z. B., and Bi, W. T., “Modification of junction flows by altering the section shapes of the cylinders,” Journal of Visualization, Vol. 11, No. 2, 2008, pp. 115-124.
[16] Wang, J. M., Bi, W. T., and Wei, Q. D., “Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow,” Experiments in Fluids, Vol. 46, No. 6, 2009, pp. 1093-1104.
[17] Huang, R. F., Hsu, C. M., and Lin, W. C., “Flow characteristics around juncture of a circular cylinder mounted normal to a flat plate,” Experimental Thermal and Fluid Science, Vol. 55, May 2014, pp, 187-199.
[18] Huang, R. F., Hsu, C. M., and Chen, C., “Effects of an upstream tetrahedron on the circular cylinder-flat plate juncture flow,” Experiments in Fluids, Vol. 56, No. 7, 2015, pp, 146-160.
[19] Richard, C. F. and John, H. S., Fundamentals of Air Pollution Engineering, Prentice Hall, New York, 1988, pp. 290-357.
[20] Lighthill, M. J., Laminar Boundary Layer, Ed. Rosenhead, L., Oxford University, Oxford, 1963, pp. 44-88.
[21] Perry, A. E. and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. Vol. 18, Part B, 1975, pp. 299-315.
[22] Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
[23] Steiner, T. R. and Perry, A. E., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271–298.

無法下載圖示 全文公開日期 2023/07/16 (校內網路)
全文公開日期 2028/07/16 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE