簡易檢索 / 詳目顯示

研究生: 姜名駿
Ming-Jyun Jiang
論文名稱: 線性信號回溯掃描系統與雙頻威爾金森分合波器之晶片化研究
A Study of Linear Retro-Beam Scanning Array System and On-Chip Dual-band Wilkinson Power Divider
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
廖文照
Wen-Jiao Liao
陳士元
Shih-Yuan Chen
朱輝南
Huy Nam Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 波束掃描陣列波達方向陣列因子信號回溯陣列方向耦合器可調式相移器Arduino測試版複合式左右手合成傳輸線整合被動元件毫米波電路
外文關鍵詞: beam-scanning array, direction of arrival, array factor, signal retro-directive array, directional coupler, tunable phase shifter, Arduino microcontroller, composite right/left handed transmission line, integrated passive device, millimeter wave circuit
相關次數: 點閱:559下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文包含兩項獨立研究主題。第一部分為「線性信號回溯掃描陣列系統」,吾人提出一款以信號回溯陣列為基底,整合波達方向偵測系統,可使系統自動判讀入射信號,並導向任意方向上之節點,使陣列扮演信號中繼點之角色,達成一款波束掃描陣列。
為實現此款信號回溯掃描陣列,吾人乃從信號回溯陣列出發,以前人研究整理歸納後之通式,並探討額外相移與陣列因子的關係,得到波達方向偵測之構想,透過方向耦合器與功率檢測器,完成波達方向偵測系統,將其整合於信號回溯陣列,並透過Arduino測試版以程式撰寫,成功實現一款具中繼站功能之線性信號回溯掃描陣列系統。經過實驗量測,確實可於目標方向角度固定下,將不同角度之接收信號於自由空間中準確回傳至目標方向角度,其掃描範圍可達±30度。
第二部份為「雙頻威爾金森分合波器之晶片化研究」,該電路以複合式左右手傳輸線之特性,使該電路可於任意選擇之雙頻帶具有威爾金森分合波器效果,而吾人將此特性延伸至毫米波頻段,並引入整合被動元件晶片製程,利用其高解析度特性,實現一款具高度整合與良好電氣特性之晶片化毫米波電路,為第一款可應用於毫米波之雙頻晶片化分合波器。


This thesis consists of two independent researches. In the first part, a linear retro-beam scanning system, capable of estimating the direction of arrival (DOA) and retransmitting the signal to a desired direction, is proposed and demonstrated. Studying the governing equations of the retrodirective array (RDA) reveals a possibility of steering the retransmitting signal from original direction (incident angle in the conventional RDA design) by introducing extra phase shifters between the receiving and transmitting paths. To do so, a simple DOA module is designed to trace out the incident angle while the required phase shift sourced by phase shifters will be automatically calculated by Arduino microcontroller as long as the desired retransmitting direction is pre-determined. To validate the design concept, the proposed system was constructed and test; the measured results illustrate that the proposed system can function as a relay unit to retransmit signals to an arbitrary direction with an acceptable scanning range from -30o to +30o.
Secondly, a 28/60 GHz dual-band power divider aiming at mm-wave applications has been designed and validated on GaAs integrated passive device (IPD) process. The design concept is based on the unique response of the composite right/left handed transmission line (CRLH-TL) to control the second operating frequency of the Wilkinson power divider. Referring from the measured results, the proposed power divider not only shows the good in-band responses at both operating frequencies but also occupies a very compact footprint when compared to other studies in the open literature. It is believed to be the first on-chip dual-band power divider at mm-wave frequencies.

第一章 緒論 1.1 研究動機與目的 1.2 文獻探討 1.3 研究貢獻 1.4 論文組織 第二章 線性信號回溯掃描陣列系統之原理 2.1 前言 2.2 設計原理與電路架構 2.2.1 設計原理 2.2.2 饋入網路架構 2.2.3 波達方向偵測系統 2.3 結語 第三章 線性信號回溯掃描陣列系統之實驗驗證 3.1 前言 3.2 信號回溯掃描陣列之構成元件 3.2.1 方向耦合器 3.2.2 可調式相移器 3.2.3 功率檢測器 3.2.4 微控制器Arduino Uno 3.2.5 增益放大器及收發天線 3.3 信號回溯掃描陣列之輻射場型量測驗證 3.3.1. 輻射場型量測架設 3.3.2. 輻射場型量測結果 3.4 結語 第四章 雙頻威爾金森分合波器 4.1 前言 4.2 砷化鎵基板整合被動元件製程 4.3 電路架構與設計原理 4.3.1 複合式左右手傳輸線 4.3.2 電路架構 4.4 電路架構與設計原理 4.4.1 複合式左右手合成傳輸線 4.4.2 雙頻帶威爾金森分合波器 4.5 結語 第五章 結論 5.1 總結 5.2 未來發展 參考文獻

[1] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,”IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206-211, Jan. 2012.
[2] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp.542-547, Feb. 2003.
[3] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirectiverectennaarrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970-2976, Jul. 2006.
[4] J. A. Vitaz,A. M. Buerkle, and K. Sarabandi, “Tracking of metallic objects using retro-reflective array at 26 GHz,” IEEE Trans. Antennas Propaga., vol. 58, no. 11, pp. 3539-3544, Nov. 2010.
[5] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
[6] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp.1764-1773, Aug. 2008.
[7] S. C. Yen and T. H. Chu, “A Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154-164, Jan. 2004.
[8] T. Brabetz, V.F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465-469, Mar. 2001.
[9] R.Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no.9, pp. 1658-1662, Sept. 2001.
[10] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71–79, Mar. 2002.
[11] S.-J Chung, T.-C. Chou, and Y.-N Chiu, “A novel card-type transponder designed using retrodirective antenna array,” in IEEE MTT-S Int. Microwave Symp. Dig., pp.1123–1126, 2001.
[12] H. Matsumoto, “Research on solar power satellites and microwave power transmission in japan,”IEEE Microw. Mag., vol. 3, no. 4, pp.36–45, Dec. 2002.
[13] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
[14] M. Cohn, “A millimeter wave retrodirective transponder for collision/obstacle avoidance and navigation/location,” in Proc. IEEE-IEE Vehicle Navigation Information Systems Conf., Ottawa, ON, Canada, pp.534–538, Oct. 1993.
[15] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A double layer Substrate Integrated Waveguide Blass Matrix for beamforming applications,” IEEE Microw. Wireless Compon. Lett., vol.19, no.6, pp. 374-376, Jun. 2009.
[16] T. Djerafi, N. J. G. Fonseca, and K. Wu, “Planar ku-Band 4 × 4 Nolen Matrix inSIW Technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp.259-266, Feb. 2010.
[17] T. N. Kaifas, J. N. Sahalos, “On the design of a single-layer wideband Butlermatrix for switched-beam UMTS system applications,” IEEE Antennas Propagt.Mag., vol. 48, no. 6, pp. 193-204, Dec. 2006.
[18] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propaga., vol. 58, no. 2, pp. 367-374, Feb. 2010.
[19] 廖振嘉,「信號反射/回溯掃描陣列之研究」,碩士論文,國立台灣科技大學,民國一百零五年。
[20] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. Antennas and Propag., vol. AP-34, no. 3, pp.276-280, Mar. 1986.
[21] R. Roy,, and Kailath, T. “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust. Speech Signal Process., 1989, 37, pp. 984–995
[22] V. V. Reddy, M. Mubeen and B. P. Ng, “Reduced-complexity super-resolution DOA estimation with unknown number of sources, ” IEEE Signal Process., 2015, pp. 772–776
[23] Q. Huang, H. Zhou, Z. Bao, X. Shi, “Accurate calibration of mutual coupling for conformal antenna arrays,” Electronics Letters., vol. 49, pp. 1418-1420, Nov. 7, 2013.
[24] S. A. Vorobyov, “Principles of minimum variance robust adaptive beamforming design,” Signal Process., vol. 93, no. 12, pp. 3264–3277, Dec. 2013.
[25] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, Albuquerque NM, 1-3 June 1992, pp. 79–82.
[26] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001
[27] F.-R. Yang, K.-P. Ma, Y. Qian and T. I. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.
[28] Y. J. Sung, C. S. Ahn and Y.-S. Kim, “Size reduction and harmonic suppression of rat race coupler hybrid coupler using defected ground structure,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 7–9, Jan. 2004.
[29] K.-O. Sun, S.-J. Ho, C.-C. Yen and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 519-520, Aug. 2005.
[30] K. Hettak, G. A. Morin, and M.G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading, ” IEEE Trans. Microw. Theory Tech., vol.53, no. 5, pp.1624–1635, May 2005.
[31] C.-C. Chen and C.-K.C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637–1647, Jun. 2004.
[32] C.-J. Lee, K.-M. K. H. Leong, and T. Itoh, “Composite right/left-handed transmission line based compact resonant antennas for RF module integration,” IEEE Trans. Antennas Propagat., vol. 54, pp. 2283-2291, Aug. 2006.
[33] C.-Y. Kuo, A. Y.-K. Chen, C. Li, and C.-H. Luo, “A mm-wave stubloaded ECPW Wilkinson power divider/combiner in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, pp. 627–629, 2012.
[34] M. Kaixue, M. Shouxian, L. Yang, M. Lim Kok, and Y. Kiat-Seng, “A 60 GHz defected ground power divider using SiGe BiCMOS technology,” in Proc. Int. SoC Design Conf. (ISOCC’11), 2011, pp. 1–4.
[35] W.-F. Liang, W. Hong, and J.-X. Chen, “A Q-band compact Wilkinson power divider using asymmetrical shunt-stub in 90 nm CMOS technology,” in Proc. Asia-Pacific Microw. Conf. (APMC’12), 2012, pp. 974–976.
[36] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Micro,. vol. 5, no. 3, pp. 34–50, Sep. 2004.
[37] L. Chang and T. G. Ma, “Dual-mode branch-line/rat-race coupler using composite right/left-handed lines,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 449–451, May 2017.
[38] C.-H. Lai, C.-Y. Shiau, and T.-G. Ma, “Tri-mode heterogeneous integrated beam-switching/Van Atta/phase conjugating array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 2180–2192, Sep. 2014.
[39] J.-Y. Zou, C.-H. Wu, and T.-G. Ma, “Heterogeneous integrated beamswitching/retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128–3139, Aug. 2013.
[40] S. Lee and Y. Lee, “An inductor-loaded microstrip directional coupler for directivity enhancement,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 362–364, Jun. 2009.
[41] The datasheet of digital phase shifter MAPS-010144 [Online].
Available: http://cdn.macom.com/datasheets/MAPS-010144.pdf
[42] The datasheet of RF power detector LT5534 [Online].
Available:https://www.analog.com/media/en/technical-documentation/data-sheets/5534fc.pdf
[43] The introduction of Arduino Uno controll board [Online].
Available: https://store.arduino.cc/usa/arduino-uno-rev3

QR CODE