簡易檢索 / 詳目顯示

研究生: 謝豐任
Fong-ren Xie
論文名稱: 鈦酸鋇/聚亞醯胺複合電容製備之研究
Prepartion of BaTiO3/Polyimide Composite Capacitors
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 陳建光
Jem-kun Chen
郭永綱
Yung-kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 131
中文關鍵詞: 鈦酸鋇聚亞醯胺
外文關鍵詞: barium titanate, polyimide
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用直接混合法,將鈦酸鋇粉末與聚亞醯胺混和並形成複合電容器,探討不同鈦酸鋇粉末處理過後對整體介電特性的影響。在此分為四個部分做探討,分別為:

1.透過比較不同的原始鈦酸鋇粉體(Alfa-BT與SS-BT)粉體與聚亞醯胺進行不同體積比的混摻,添加50vol%的SS-BT有最高的介電常數值為51,其介電損失約為0.02附近。

2.原始粉體經高溫燒結後與聚亞醯胺混摻形成複合電容時,結果發現,於Alfa-BT系統中,隨著溫度的升高對結晶性有明顯的幫助,導致複合電容的介電常數上升,以50vol%為例,Alfa-BT/聚亞醯胺複合電容的介電常數約為16而Alfa-BT-1200/聚亞醯胺複合電容器的介電常數為35;於SS-BT系統中,1200℃燒結後由於晶粒成長顯著,造成介電常數上升,以50vol%為例,SS-BT/聚亞醯胺複合電容的介電常數約為51而SS-BT-1200/聚亞醯胺複合電容器的介電常數為55。

3. 於晶粒細化對介電性質之影響,將原始粉末SS-BT與1200℃燒結後SS-BT-1200之粉末分別進行高速行星球磨3小時與6小時之實驗。實驗結果發現SS-BT粒徑由300 nm減為260 nm再減為130 nm;而SS-BT-1200則從356 nm減為243 nm再減為134 nm。經過行星球磨後表面產生OH官能基,利用此官能基使粉體產生靜電斥力,減少團聚產生。但介電特性隨著球磨時間的增加而有觀察到下降的趨勢,以50vol%為例,SS-BT複合電容之介電常數經過行星球磨後,其值從51降至27;而SS-BT-1200複合電容之介電常數則從55降至 26。

4. 於粉體表面化學改值對介電性質之影響,本實驗將Alfa-BT與SS-BT以雙氧水氫氧基化再以GPTMS表面接枝改質探討對介電性質之影響。實驗結果發現,經改質後粉體所製成的複合電容,其分散性有明顯的改善但其介電常數下降的趨勢,主要因為經表面改質的粉體聚有較佳的分散性。

關鍵字:鈦酸鋇、聚亞醯胺


In this work, dielectric properties of BaTiO3/polyimide hybrid capacitors prepared with two kinds of BaTiO3 powders undergoing different modifications were investigated. The results can be summarited as the following four parts.
1. The hybrid capacitors with the BaTiO3 powders from Alfa (AlFa-BT) and from our self-synthesized ones (SS-BT) were studied at different BaTiO3 volume ratios. The 50%SS-BT/polyimide capacitors had the highest dielectric constant of 51 and a loss-tangent value of 0.02.
2. The dielectric properties of BaTiO3/polyimide capacitors were investigated for ceramic powders undergoing different sintering treatments. For the Alfa-BT capacitors, the crystallinity of BaTiO3 powder was improved. The dielectric constant of hybrid capacitors with 1200oC-treated powders was 35 but it was 16 for those with the as-received powders. For the SS-BT capacitors, the BaTiO3 powders had good crystallinity after it was sintered at 1200oC. The dielectric constant of hybrid capacitors with 1200oC-treated powders was 55 and it reached 51 for those with the as-fabricated powders.
3. To investigate the effect of ceramic particle size on the dielectric properties, the SS-BT and the 1200oC-treated BaTiO3 powders were underwent the high-speed planetary ball milling. The results displayed a refinement in particle size. The SS-BT powders with a particle size of 300 nm reduced to 260 nm and 130 nm after they were ball milled for 3h and 6h, respectively. The 1200oC-treated SS-BT powders with a particle size of 356 nm reduced to 243 nm and 134 nm after they were ball milled for 3h and 6h, respectively. The generated hydroxyl group on the milled powders provided the good dispersion for the fine powders. The dielectric constant of 51 for the 50% SS-BT/polyimide capacitors decreased to 27 after the planetary ball milling. It changed from 55 to 26 for the 1200oC-treated BaTiO3/polyimide capacitors.
4. To investigate the effect of surface modification of ceramic powder on the capacitor dielectric properties, the surfaces of Alfa-BT and SS-BT powders were firstly functionalized with hydroxyl group followed by chemically bonding with 3-glycidoxypropyltrimethoxysilane (GPTMS). The dispersion of BaTiO3 in polyimide was greatly improved, but the dielectric constants of capacitors apparently reduced. The 30% Alfa-BT/polyimide capacitors reduced its dielectric constant from 16 to 14 after the surface modification by silane. It changed from 27 to 14 for the SS-BT/polyimide capacitors.

Key word:Barium titanate、Polyimide

第一章 緒論 1 1-1 前言 1 1-2 有機/無機複合材料 3 1-3 研究動機 4 第二章 基礎理論與文獻回顧 6 2-1材料的極化現象 6 2-1-1材料晶體結構 6 2-1-2 介電材料的極化機構 10 2-2鈦酸鋇陶瓷簡介 14 2-3聚亞醯胺(Polyimide)簡介 18 2-3-1 聚亞醯胺種類 22 2-3-2 聚亞醯胺合成理論 28 2-4 有機/無機混成複合材料 31 2-4-1 DLVO理論 31 2-4-2 粉體的穩定與分散 33 2-4-3無機陶瓷粉體填充材料改質方法 35 2-5材料電特性 36 2-5-1材料介電性質 36 2-5-2有機/無機混成材料介電性質 37 2-5-3介電損失 40 2-5-4 介電崩潰 41 2-6文獻回顧 42 2-6-1 鈦酸鋇/聚亞醯胺混成複合薄膜 42 2-6-2 鈦酸鋇/環氧樹脂混成複合薄膜 46 2-6-3 鈦酸鋇/其他高分子混成複合薄膜 52 第三章 實驗方法與步驟 66 3-1實驗藥品 66 3-2實驗步驟 68 3-2-1鈦酸鋇/聚亞醯胺複合材料製備 68 3-2-2聚亞醯胺製備 69 3-2-3鈦酸鋇粉體製備 72 3-3實驗分析儀器 77 3-6-1 X光繞射分析儀(X-ray Diffractometer,XRD) 77 3-6-2高解析度場發射掃描式電子顯微鏡 77 3-6-3 傅立葉轉換紅外線光譜分析儀(Fourier Transform Infrared Spectrometer, FTIR) 77 3-6-4 半導體參數分析儀(Semiconductor Device Analyzer Mainframe) 77 3-6-5雷射奈米粒徑分析儀(Semiconductor Device Analyzer Mainframe) 78 3-6-6輪廓形狀測定儀 78 第四章 結果與討論 79 4-1 鈦酸鋇與聚亞醯胺基本特性 79 4-1-1鈦酸鋇粉體特性 79 4-1-2聚亞醯胺特性 82 4-2不同鈦酸鋇添加比例之鈦酸鋇/聚亞醯胺混成複合電容 84 4-2-1混成複合厚膜XRD分析 84 4-2-2混成複合厚膜微觀組織分析 86 4-2-3 鈦酸鋇/聚亞醯胺混成複合電容之介電特性 92 4-3 鈦酸鋇熱處理溫度對複合電容之介電性質影響 95 4-3-1 不同鈦酸鋇熱處理溫度XRD分析 96 4-3-2鈦酸鋇/聚亞醯胺混成複合薄膜介電性質 97 4-4 鈦酸鋇粒徑大小對複合電容之介電性質影響 101 4-4-1 球磨時間對鈦酸鋇粒徑大小分析 102 4-4-2 不同行星球磨時間XRD分析 105 4-4-3 不同粒徑大小對鈦酸鋇FT-IR分析 107 4-4-4鈦酸鋇/聚亞醯胺混成複合薄膜SEM分析 109 4-4-5鈦酸鋇/聚亞醯胺混成複合電容介電性質 112 4-5 鈦酸鋇粉體表面改質對複合電容之影響 116 4-5-1化學改質鈦酸鋇粉末之FT-IR分析 117 4-5-2鈦酸鋇/聚亞醯胺複合薄膜表面形態 118 4-5-3化學改質對於鈦酸鋇/聚亞醯胺複合電容之介電特性 122 第五章 結論 126 第六章 參考文獻 128

[1] 張謙志,東華大學,碩士論文,2000
[2] 《工業技術與資訊》2010年12月號第230期P34~41
[3] 工業材料雜誌,285期
[4] 蔡宗燕,化工資訊,”奈米級無機材料的發展與應用” 12,2, (1998)
[5] 余君臨,中山大學,碩士論文,2001.
[6] J. F. Scott, in Ferroelectric Memories, Springer, Germany, 2000.
[7] L. L. Hudson and J. K. West, in Principles of Electronic Ceramics,1990 .
[8] 李雅明, 吳世全, 陳宏名, 鐵電記憶體元件, 電子月刊, 14(9) (1996) 68.
[9] 孫郁明, 清華大學, 博士論文, 2002.
[10] Y. XU, in Ferroelectric Materials and Their Applications, North-Holland, Netherlands, 1991.
[11] 李浚瑋,聯合大學,碩士論文,2007.
[12] A. J. Moulson and J. M. Herbert, in Electroceramics-Materials、Properties、Applications, Chapman and Hall, 2002.
[13] 吳朗, 電子陶瓷-介電,全欣資訊圖書.
[14] K.M. Ralls, T.H. Courtney, and J. Wulff, in Introduction to Materials Science and Eng., J. Wiley & Sons, Inc., 1976.
[15] Saito, Y., et al., Lead-free piezoceramics. Nature, 2004. 432(7013): p. 84-87.
[16] J.Q. Eckert Jr., C.C Hung-Houston, B. L. Gersten, M.M. Lencka, R.E. Riman.,“Kinetics and mechanisms of hydrothermal synthesis of barium titanate,” J. Am.Ceram. Soc. 79, 2929-39(1996).
[17] Z. H. Michael, E, Andrew, J. Claudia, D. R. Rodeny, “Wet-chemical synthesis of monodispersed barium titanate particles hydrothermal conversion of TiO2.
[18] S. Brain, Infrared Spectral Interpretation, CRC press , Washington D.C., (1999).
[19] M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc., 30, 1140(1908)
[20] 馬振基,“聚亞醯胺樹脂之合成特性與應用”,塑膠資訊, 1997, 12
[21] 馬振基,高分子複合材料上冊,正中書局, 1995
[22] 江選雅,化工資訊, 1999, 7, 43-48
[23] G. D.Khune,“Preparation and Properties of Polyimides from Diisocyanates”, J. Macromal. Sci. Chem., 1980, 14, 687
[24] 邱致銘,成功大學,碩士論文,2003
[25] H. Inoue ; Y. Sasaki ; T. Ogawa,“Comparison of One-pot and
Two-step Polymerization of Polyimide from BPDA/ODA”, J.Appl.Polym. Sci., 1996, 60, 123
[26] A. G. Endry, US Pat. 317630 ; 317631; 317632
[27] Y. J. Kim, T. E. Glass, G. D. Lyle and J. E. Mcgrath,Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions,Macromolecules 26,1344-1058 (1993)
[28] T. Saegusa, “Organic-inorganic polymers hybrids”, Pure Appl. Chem., 67(12) ,
p.1965(1995).
[29]高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,五南圖書,2005
[30] Robert J. Pugh, L. Bergstrom , Surface and Colloid Chemistry in Advanced Ceramics Processing , Marcel Dekker , 1994 .
[31] 陳致宇,成功大學,碩士論文,2007.
[32] 李東霖,成功大學,博士論文,2010.
[33] W.D.Kingery,H.K.Bowen,and D.R.Uhlmann“Introduction to ceramics”, 2nd Edition,John Wiley&Sons,New York,(1976)
[34] K.Lichtenecker,“Die Dielektrizitatskonstante Naturlicher and Kunstlischer
Mischkorper”,PhysilkalZ,27,p115-118,(1926)
[35] 黃建豪,中央大學,碩士論文,2004.
[36] 陳聯祥,中山大學,碩士論文,(2005)
[37] Joohyun Lee, Youngjun Ko, and Jinhwan Kim*,“Effect of Poly(amic acid)-treated BaTiO3 on the Dielectric and Mechanical Properties of BaTiO3/Polyimide Composites” , MACROMOL RES, Vol. 18, No. 2, pp 200-203 (2010)
[38] Zhi-Min Dang,* You-Qin Lin, Hai-Ping Xu, Chang-Yong Shi, Sheng-Tao Li, and Jinbo Bai,“Fabrication and Dielectric Characterization of Advanced BaTiO3/Polyimide Nanocomposite Films with High Thermal Stability**” , ADV FUNCT MATER, DOI: 10.1002/adfm.200701077
[39] Shu-Hui Xie, Bao-Ku Zhu*, Xiu-Zhen Wei, Zhi-Kang Xu, You-Yiu,“Polyimide/BaTiO3 composites with controllable dielectric properties” ,Composites: Part A 36 (2005) 1152–1157
[40] Narayan Mukherjee, Dattatray Wavhal, and Richard B. Timmons*“Composites of Plasma Surface Functionalized Barium Titanate Nanoparticles Covalently Attached to Epoxide Matrices: Synthesis and Evaluation” , ACS APPL MATER INTER,VOL. 2 ,NO. 2,397–407, 2010
[41] Motoyuki Iijima∗, Nobuhiro Sato, I. Wuled Lenggoro, Hidehiro Kamiya∗,“Surface modification of BaTiO 3 particles by silane coupling agents in different solvents and their effect on dielectric properties of BaTiO 3 /epoxy composites” , COLLOID SURFACE A, 352,88–93(2009)
[42] Zhi-Min Danga,* , Yan-Fei Yua, Hai-Ping Xua, Jinbo Bai,“Study on microstructure and dielectric property of the BaTiO 3 /epoxy resin composites” , COMPOS SCI TECHNOL,68,171–177(2008)
[43] Hailong Tang,ZhenMa,JiachunZhong,JianYang,RuiZhao,XiaoboLiu*“Effect of surface modification on the dielectric properties of PEN nanocomposites based ondouble-layercore/shell-structured BaTiO3 nanoparticles” , COLLOID SURFACE A,2011.
[44] Eduard A. Stefanescu, Xiaoli Tan, Zhiqun Lin, Nicola Bowler, Michael R. Kessler*“Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural-dielectric composites” , Polymer,2011.
[45] Jina Chon, Saemi Ye, Kyoung Jin Cha, Seong Chul Lee, Yong Sung Koo, Jong Hoon Jung,*and Yong Ku Kwon*, “High-K Dielectric Sol-Gel Hybrid Materials Containing Barium Titanate Nanoparticles”,Chem. Mater. 2010, 22, 5445–5452
[46] Arup Choudhury“Dielectric and piezoelectric properties of polyetherimide/BaTiO3 nanocomposites” MATER CHEM PHYS 121 (2010) 280–285
[47] Junjun Li,Jason Claude, Luis Enrique Norena-Franco,Sang Il Seok, “Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles” Chem. Mater. 2008, 20, 6304–6306
[48] Philseok Kim, Simon C. Jones, Peter J. Hotchkiss, Joshua N. Haddock, Bernard Kippelen,Seth R. Marder,* and Joseph W. Perry* , “Phosphonic Acid-Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength” ADV FUNCT MATER , DOI:10.1002/adma.200602422

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE