簡易檢索 / 詳目顯示

研究生: 高芳財
Fan-Tsai Kao
論文名稱: 多模多頻手持式裝置射頻前端模組整合設計
Integration Design of Multi-Mode Multi-Band RF Front-End for Mobile Handset Applications
指導教授: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
口試委員: 張勝良
Sheng-Lyang Jang
陳國龍
none
溫俊瑜
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 137
中文關鍵詞: 多模多頻長期演進技術寬頻分碼多工擷取第二代行動通訊第三代行動通訊第四代行動通訊
外文關鍵詞: Multi-Mode, 2G
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一個具有低成本、體積小、低零件使用量,應用於手機支援多模多頻之射頻前端電路整合設計,此設計支援2G GSM 4頻、3G WCDMA 2100、1900、850、900MHz頻段與LTE 頻段1、頻段2、頻段4、頻段5、頻段7、頻段8、頻段17、頻段20 的操作。2G GSM850、GSM900、PCS1800和DCS1900量測輸出功率分別為32dBm、32.87 dBm、28.99和30.25,接收靈敏度方面皆可達-109dBm。3G WCDMA 2100MHz、1900MHz、850MHz、900MHz在QPSK調變,量測輸出功率分別為22.05 dBm、22.12dBm、22.5dBm及22.49dBm ,接收靈敏度方面皆可達-109dBm。LTE在10MHz頻寬、QPSK的調變及Full Resource Block,頻段1、頻段2、頻段4、頻段5、頻段7、頻段8、頻段17、頻段20量測輸出功率分別為21.06dBm、21.2dBm、21.06dBm、21.06dBm、20.49dBm、21.76dBm、21.63dBm及21.55dBm,接收靈敏度方面分別為-97.5dBm、-98.5dBm、-98.5dBm、-99dBm、-97dBm、-98.5dBm、-98.3dBm及-98.5dBm。量測結果證明此設計符合2G/3G WCDMA及LTE行動通訊技術規範之要求。


In this thesis, we present an integration design of multi-mode/multi-band RF front-end with low cost, less BOM count and small size for mobile handset applications. Based on this research, LTE B1, B2, B4, B5, B7, B8, B17 and B20, 3G WCDMA B1, B2, B5, and B8 as well as 2G quad-band (GSM850, GSM900, PCS1800 and DCS1900) operations are supported.
A 32dBm transmit power is obtained for 2G GSM850 signal at 836.6MHz, and receiving sensitivity is better than -109dBm measured at 881.6MHz. Under the 2G GSM900 signal at 897.6MHz, this work gives a 32.87dBm transmit power, and receiving sensitivity is up to -109dBm measured at 942.6MHz. A 28.99dBm transmit power is obtained for 2G DCS1800 signal at 1474.8MHz, and receiving sensitivity is better than -109dBm measured at 1842.8MHz. Under the 2G PCS1900 signal at 1879.8MHz, this work gives a 30.25dBm transmit power, and receiving sensitivity is up to -109dBm measured at 1959.8MHz.
For 3G WCDMA B1 signal with QPSK modulation scheme at 1.95GHz, A 22.05dBm transmit power is obtained, and receiving sensitivity is up to -109dBm measured at 2.14GHz. A 22.12dBm transmit power for 3G WCDMA B2 signal with QPSK modulation scheme at 1.88GHz is obtained, and receiving sensitivity is better than -109dBm measured at 1.96GHz. Under 3G WCDMA B5 signal with QPSK modulation scheme at 836.6MHz, which a 22.5dBm transmit power is obtained, and receiving sensitivity is up to -109dBm measured at 881.6MHz. A 22.49dBm transmit power for 3G WCDMA B8 signal with QPSK modulation scheme at 897.4MHz is obtained, and receiving sensitivity is better than -109dBm measured at 942.4MHz.
For LTE B1 with QPSK modulation scheme, Full Resource Block (FRB) allocation and 10MHz bandwidth signal at 1.95GHz, a targeted maximum output power of 21.06dBm is achieved, and receiving sensitivity is up to -97.5dBm measured at 2.14GHz with 10MHz bandwidth signal. A targeted 21.2dBm transmit power is achieved with QPSK modulation scheme, FRB allocation and 10MHz bandwidth signal at 1.88GHz, and receiving sensitivity is better than -98.5dBm measured at 1.96GHz with 10MHz bandwidth signal. For LTE B4 with QPSK modulation scheme, FRB allocation and 10MHz bandwidth signal at 1.7325GHz, which a targeted maximum output power of 21.06dBm is achieved, and receiving sensitivity is up to -98dBm measured at 2.1325GHz with 10MHz bandwidth signal. A targeted 21.06dBm transmit power is achieved for LTE B5 with QPSK modulation scheme, FRB allocation and 10MHz bandwidth signal at 836.5MHz, and receiving sensitivity is better than -99dBm measured at 881.5MHz with 10MHz bandwidth signal. For LTE B7 with QPSK modulation scheme, FRB allocation and 10MHz bandwidth signal a targeted maximum output power of 20.49dBm is achieved, and receiving sensitivity is up to -97dBm measured at 2.655GHz with 10MHz bandwidth signal. A targeted 21.76dBm transmit power is achieved for LTE B8 with QPSK modulation scheme, FRB allocation and 10MHz bandwidth signal at 897.5MHz, and receiving sensitivity is better than -98.3dBm measured at 942.5MHz with 10MHz bandwidth signal. For LTE B17 with QPSK modulation scheme and FRB allocation and 10MHz bandwidth signal at 710MHz, which a targeted maximum output power of 21.63dBm is achieved, and receiving sensitivity is up to -98.3dBm measured at 740MHz with 10MHz bandwidth signal. A targeted 21.55dBm transmit power is achieved for LTE B20 with QPSK modulation scheme, FRB allocation and 10MHz bandwidth signal at 847MHz, and receiving sensitivity is better than -98.5dBm measured at 806MHz with 10MHz bandwidth signal.

List of Figures........................................................ VII List of Tables......................................................... XII Chapter 1 Introduction................................................. 1 1.1 Motivation...................................................... 1 1.2 Challenges and Objectives....................................... 3 1.3 Cellular Communication Standards................................ 5 1.3.1 3G WCDMA.................................................. 5 1.3.2 3G WCDMA Standard Requirements............................ 6 1.3.3 LTE....................................................... 7 1.3.4 LTE Standard Requirements................................. 8 1.4 Organization of This Thesis..................................... 9 Chapter 2 Multi-Mode/Multi-Band Radio Systems.......................... 11 2.1 Why Needs Multi-Mode/Multi-Band Radio?.......................... 11 2.2 Conventional Front-End Design Topologies........................ 12 2.3 Front-End Design Topologies for Multi-Band/Multi-Mode Radio..... 14 2.3.1 The Discrete RF Front-End Design Topology................. 14 2.3.2 The Converged RF Front-End Design Topology................ 15 2.3.3 The Hybrid RF Front-End Design Topology................... 15 2.3.4 Summary................................................... 16 2.4 Transmitter Architecture........................................ 17 2.4.1 Direct Conversion Transmitter............................. 18 2.4.2 Super-Heterodyne Transmitter.............................. 20 2.4.3 Polar Transmitter......................................... 21 2.5 Receiver Architectures.......................................... 25 2.5.1 Zero-IF Receiver.......................................... 26 2.5.2 Super-Heterodyne Receiver................................. 27 2.5.3 Low-IF Receiver........................................... 28 Chapter 3 High-Throw and High-Power RF Switch.......................... 30 3.1 Introduction.................................................... 30 3.2 Literature discussion of high-throw and high-power RF Switches.. 31 Chapter 4 Power Amplifier.............................................. 36 4.1 Introduction.................................................... 36 4.2 Design Consideration for Power Amplifiers....................... 37 4.2.1 Output Power.............................................. 37 4.2.2 Efficiency................................................ 38 4.2.3 Nonlinear Behavior of a PA................................ 39 4.2.4 Stability................................................. 44 4.2.5 Gain...................................................... 44 4.3 Literature discussion for PA efficiency enhancement............. 46 Chapter 5 A Complete Multi-Band/Multi-Mode RF Front-End................ 51 5.1 Proposed RF Front-End Circuits.................................. 51 5.1.1 Transceiver............................................... 53 5.1.2 Antenna Switch Module..................................... 55 5.1.3 Multi-Mode/Multi-Band Power Amplifier..................... 58 5.1.4 Power Supply Modulator of Power Amplifiers................ 63 5.2 PCB Assembly.................................................... 66 5.3 Experimental Results............................................ 68 5.3.1 2G Measurement Results.................................... 68 5.3.2 3G WCDMA Measurement Results.............................. 82 5.3.3 LTE Measurement Results................................... 92 Chapter 6 Conclusions and Future Work.................................. 113 6.1 Conclusions..................................................... 113 6.2 Future Work..................................................... 116 References............................................................. 118

[1] 3GPP 2009 Workshop for Evaluation Presentation Material, “LTE-Advanced
(3GPP Release 10 and beyond) RF aspects,” Dec. 2009. [Online]. Available:
ftp://www.3gpp.org/workshop/2009-12-17_ITU-R_IMT-Adv_eval/docs/pdf/REV-090006.pdf.
[2] ROHDE&SCHWARZ Presentation Material, “LTE Market and LTE RF
Measurement,” Aug. 2011. [Online]. Available:http://std-share.itri.org.tw/Content/Files/Event/Files/7.LTE%20marketing%20and%20RF%20measurement.pdf
[3] 3GPP TS 51.010 V10.3.0 (2013-02), 3GPP Organizational Partners, Feb. 2013.
[Online]. Available: http://www.3gpp.org/DynaReport/51010-1.htm
[4] 3GPP TS 34.121 V10.5.0 (2013-02), 3GPP Organizational Partners, Feb. 2013.
[Online]. Available: http://www.3gpp.org/DynaReport/34121.htm
[5] 3GPP TS 36.101 V10.1.1 (2011-01), 3GPP Organizational Partners, Jan. 2011.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36101.htm
[6] C. Smith and D. Collins, 3G Wireless Networks, 1st ed. McGraw-Hill
Professional, 2001.
[7] M. Nohrborg, “LTE Overview,” 3GPP Organizational Partners. [Online].
Available: http://www.3gpp.org/LTE
[8] J. Wannstrom, “LTE-Advanced,” 3GPP Organizational Partners, May 2012.
[Online]. Available: http://www.3gpp.org/LTE-Advanced
[9] W-CDMA. 3GPP Organizational Partners. [Online]. Available:
http://www.3gpp.org/article/w-cdma
[10] H. Holma and A. Toskala, 3G WCDMA for UMTS: HSPA Evolution and LTE,
5th ed. John Wiley & Sons Ltd, Sept. 2010.
[11] H. G. Myung, J. Lim, and D. J. Goodman, “Single Carrier FDMA for Uplink
Wireless Transmission,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 30 –38,
Sept. 2006.
[12] Cheng, Nick, “Challenges and Requirements of Multimode Multiband Power
Amplifiers for Mobile Applications,” IEEE Compound Semiconductor Integrated
Circuit Symposium (CSICS), Oct. 2011
[13] B. Razavi, “RF Microelectronics,” Prentice Hall, NY, 1998.
[14] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,”
Cambridge University Press, 2nd Edition, 2003.
[15] J.M. Hsu. “A 0.18um CMOS Offset-PLL Up Conversion Modulation Loop IC
for DCS1800 Transmitter,” IEEE Journal of Solid-State Circuits, pp. 603-613, Apr. 2003.
[16] Michael R. Elliot, Tony Montalvo, Brad P.Jeries, Frank Murden, Jon Strange, Allen Hill, Sanjay Nandipaku, and Johannes Harrebeck. “A Polar Modulator Transmitter for GSM/EDGE,” IEEE Journal of Solid-State Circuits, pp.
2190-2199, Dec. 2004.
[17] P. Nagle, P. Burton, E. Heaney, and F. McGrath, “A Wide-Band Linear Amplitude Modulator for Polar Transmitters Based on the Concept of Interleaving Delta Modulation,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 1748 - 1756, Dec. 2002.
[18] N. Won and T. H. Meng, “Direct-Conversion RF Receiver Design,” IEEE Transactions on Communications, vol. 49, no. 3, pp. 518-529, Mar. 2001.
[19] J. K. Cavers and M. W. Liao, “Adaptive Compensation for Imbalance and Offset Losses in Direct Conversion Transceivers,” IEEE Transactions on Vehicular Technology, vol. 42, pp. 581–588, Nov. 1993.
[20] J. Ryynanen et al., “RF Gain Control in Direct-Conversion Receivers,”
Proceedings ISCAS, vol. 4, pp. 117-120, May 2002.
[21] J. Crols and M. S. J. Steyaert, “An Analog Integrated Polyphase Filter for a High Performance Low-IF Receiver,” Digest of Technic Papers of 1995 Symposium on VLSI Circuit, pp. 87-88, Jun. 1995.
[22] F. Behbani, Y. Kishigami, J. Leete and A. A. Abidi, “CMOS 10 MHz-IF Down
converter with On-Chip Broadband Circuit for Large Image-Suppression,” Digest of Technic Papers of 1999 Symposium on VLSI Circuit, pp. 83-88, Jun. 1999.
[23] S. H. Galal, H. F. Raggaie and M. S. Tawfik, “RC Sequence Asymmetric
Polyphase Networks for RF Integrated Transceivers,” IEEE Transactions on Circuits and System-II: Analog and Digital Signal Processing, vol. 47, no. 1, pp. 18-27, Jan. 2000.
[24] P. Andreani, S. Mattisson and B. Essink, “A CMOS gm-C Polyphase Filter with High Image Band Rejection,” Processing of the 2000 European Solid-State Circuit Conference, pp. 244-247, Sept. 2000.
[25] Skyworks White Paper, “Choosing the Right RF Switches for Smart Mobile
Device Applications,” May 2011.
[26] D. Kelly, C. Brindle, C. Kemerling, and M. Suber, “The state of the art of
silicon-on-sapphire CMOS RF switches,” IEEE Compound Semicond. IC Symp., pp.
200–203, Oct. 30 - Nov. 2, 2005.
[27] Ali Tombak1, Christian Iversen, Jean-Blaise Pierres, Dan Kerr et al., “ Cellular Antenna Switches for Multimode Applications Based on a Silicon-on-Insulator Technology,” IEEE Radio Frequency Integrated Circuits Symposium, pp.271-274, May 2010.
[28] T. Ranta, J. Ella and H. Pohjonen, “Antenna switch linearity requirements for GSM/WCDMA mobile phone front-ends,” 2005 European Conference on Wireless Technology, pp. 23-26, Oct. 2005.
[29] Michael D. Yore, Corey A. Nevers and Philippe Cortese,“High-Isolation
Low-Loss SP7T pHEMT Switch Suitable for Antenna Switch Modules,” Microwave
Integrated Circuits Conference (EuMIC), pp. 69-72, Sept. 2010.
[30] Volker Blaschke, Aharon Unikovski, Paul Hurwitz and Samir Chaudhry, “A
SP9T Cellular Antenna Switch in 2.5 V CMOS Thin-Film SOI,” Silicon Monolithic
Integrated Circuits in RF Systems (SiRF), pp. 244-246, Jan. 2013.
[31] Ali Tombak, Michael S. Carroll, Daniel C. Kerr, Jean-Blaise Pierres, and
Edward Spears, “Design of High-Order Switches for Multimode Applications on a Silicon-on-Insulator Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 10, Oct. 2013.
[32] Q. Chaudhry, R. Bayruns, B. Arnold and P. Sheehy , “A Linear CMOS SOI
SP14T Antenna Switch for Cellular Applications,” IEEE Radio Frequency Integrated Circuits Symposium, p.p 155-158, Jun. 2012.
[33] Nujira White paper, “An introduction to Envelope Tracking”, Oct. 2014.
[34] Toshifumi Nakatani, “Digital Switching CMOS Power Amplifier for Multiband
and Multimode Handset Applications,” Ph.D. Dissertation, University of California,
San Diego, Department of Electrical Engineering, 2013.
[35] F. Ellinger, “Radio Frequency Integrated Circuits and Technologies,” Springer Verlag, 2008.
[36] Biranchinath Sahu and Gabriel A. Rincón-Mora, “A High Efficiency, Linear RF Power Amplifier with a Power-Tracking, Dynamically Adaptive Buck-Boost Supply,”Submission for IEEE Transactions on Microwave Theory and Techniques, May 2014.
[37] Junghwan Moon, Junghwan Son, Juyeon Lee, Jungjoon Kim et al., “A
Multimode/Multiband Envelope Tracking Transmitter with Broadband Saturated
Power Amplifier,” IEEE MTT-S International Microwave Symposium, Jun. 2011.
[38] G. Hueber and R. Staszewski, “Multi-Mode/Multi-Band RF Transceivers for
Wireless Communications: Advanced Techniques, Architectures, and Trends,”
Wiley-IEEE Press, 2010.
[39] Muhammad Hassan, Lawrence E. Larson, Vincent W. Leung, and Peter M.
Asbeck, “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope
Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of
Solid-State Circuits, vol. 47, no. 5, pp. 180-183, May 2012.
[40] J. S. Walling, S. S. Taylor, and D. J. Allstot, “A class-G supply modulator and class-E PA in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2339-2347, Sept. 2009.
[41] V. Pinon, F. Hasbani, A. Giry, D. Pache, and C. Garnier, “A single-chip WCDMA envelope reconstruction LDMOS PA with 130 MHz switched mode power supply,”IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 564-565, Feb. 2008.
[42] W. Chu, B. Bakkaloglu, and S. Kiaei, “A 10 MHz-bandwidth 2 mV-ripple
PA-supply regulator for CDMA transmitters,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 448-449, Feb. 2008.
[43] J. Choi, D. Kim, D. Kang, and B. Kim, “A polar transmitter with CMOS
programmable hysteretic-controlled hybrid switching supply modulator for
multi-standard applications,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 7, pp. 1675-1686, Jul. 2009.
[44] J. Hoversten and Z. Popović, “Envelope tracking transmitter system analysis method,” IEEE Radio Wireless Symp., pp. 180-183, Jan. 2010.
[45] Junghyun Ham, Haeryun Jung, Hyungchul Kim et al., “A CMOS Envelope
Tracking Power Amplifier for LTE Mobile Applications,” Journal of Semiconductor
Technology and Science, vol.14, no.2, pp. 234-245, Arp. 2014.
[46] Junghyun Ham, Haeryun Jung, Jongsuk Bae et al., “Dual Bias Modulator for
Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier,”
Journal of Semiconductor Technology and Science, vol.14, no.6, Dec. 2014.
[47] QUALCOMM Data Sheet, “WTR1625/WTR1625L Wafer-level RF
Transceiver,” Apr. 2014.
[48] SONY Data Sheet, “CXM3807K SP12T Antenna Switch Module for 10TRx/2Tx
with MIPI I/F”.
[49] RFMD data sheet, “RF7459 Multi-MODE/BAND PA Module”.
[50] QUALCOMM Design Guidelines/Training Slides, “QFE1100/QFE1101 PA
Power Management IC,” Feb. 2015.
[51] QUALCOMM Data Sheet, “QFE1100/QFE1101 PA Power Management IC,”
Feb. 2014.
[52] Guangli Yang, Hao Wang, and Li Yang, “Tunable Antenna Introductions,
Challenges and Opportunities,” Progress in Electromagnetics Research Symposium
Proceedings, Guangzhou, China, Aug. 2014.
[53] Andre van Bezooijen, Reza Mahmoudi and Arthur H. M. van Roermund,
“Adaptive Methods to Preserve Power Amplifier Linearity under Antenna Mismatch
Conditions,” IEEE Transactions on Circuits and Systems, Vol. 52, No. 10, pp.
2101-2108, Oct. 2005.
[54] Qizheng Gu, “RF System Design of Transceivers for Wireless Communications,”Springer, New York, 2005.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE