簡易檢索 / 詳目顯示

研究生: 湯富程
Fu-Cheng Tang
論文名稱: 具超親水與水下超疏油特性高分子/纖維素複合材料製備及其在油水分離研究
Preparation of superhydrophilic and underwater superoleophobic polymer/cellulose composites for oil/water separations
指導教授: 胡蒨傑
Chien-Chieh Hu
王志逢
Chih-Feng Wang
口試委員: 賴君義
Juin-Yih Lai
蔡協致
Hsieh-Chih Tsai
胡蒨傑
Chien-Chieh Hu
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 超親水纖維素高分子複合材料生物可降解性油水分離乳化液分離
外文關鍵詞: superhydrophilicity, cellulose, polymer composite, biodegradability, oil/water separation, emulsion separation
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用天然材料製造具有超親水及水下超疏油特性的高分子/纖維素複合材料,所有的改質材料皆擁有高於 160 °的水下油接觸角。超親水海藻酸鈉/氧化鈣改質布料可分離各種不同的油水混合液,並且於酸、鹼和高鹽的環境中也能保持其分離效能,其分離通量最大達 42500 L m −2h−1,濾液油含量低於 10 ppm,且在經過 150 分鐘的循環測試後也能保持其分離效能。壓縮過的超親水海藻酸鈉/氧化鈣改質棉花則可用來分離各種油多水少乳化液以及各種水多油少乳化液,油多水少乳化液的分離通量在重力過濾下最高可達 17300 L m −2h−1,負壓條件下 (0.025 bar) 最高可達 2380000 L m −2h−1bar −1,並且濾液油純度皆高於 99.99wt%,經過 20 次循環分離測試後仍能保持其效能;水多油少乳化液的分離通量在重力過濾下最高可達 7454 L m −2h−1,負壓條件下 (0.025 bar) 最高可達 308100L m −2h−1bar −1,並且分離效益皆高於 99%,經過 20 次循環分離測試後仍能保持其效能。改質後的棉花具有與原始棉花相似的生物可分解特性。超親水植酸/蛋白改質布料同樣可以分離各種不同的油水混合液,通量最大達 58200 L m −2h−1,濾液油含量低於 5 ppm,且在經過 50 次的循環測試後仍能保持其效能。


In this study, we prepared superhydrophilic and underwater superoleophobic polymer/cellulose composites from natural materials. The underwater oil contact angles of our materials were higher than 160°. The superhydrophilic sodium alginate/calcium oxide-modified fabric can be used to separate various oil/aqueous solution mixtures including pure water, acidic and basic solutions. The separation flux was up to 42500 L m −2h −1and oil content in the filtrate was lower than 10 ppm. The compressed superhydrophilic sodium alginate/calcium oxide-modified raw cotton can be used to separate various oil-in-water and various water-in-oil emulsions. The separation flux of the oil-in-water emulsion was up to 17300 L m −2h−1 under gravity conditions, and 2380000 L m −2h −1bar −1under external pressure (0.025 bar), and the oil purity in all filtrates was higher than 99.99 wt%. The separation flux of the water-in-oil emulsion is up to 7454 L m −2h −1under gravity conditions, and 308100 L m −2h −1bar −1 under external pressure (0.025 bar), and the separation efficiency for all tests was higher than 99%. The modified raw cotton showed similar biodegradability to that of pristine cotton. The super-hydrophilic phytic acid/egg white proteins-modified fabric can be used to separate various oil/water mixtures. The separation flux was up to 58200 L m −2h −1 and the oil content in the filtrate was less than 5 ppm. The modified fabric maintained its performance after 50 cycles of separation test.

第一章、緒論 1 1.1背景 1 1.2油水分離 1 1.3研究動機 2 第二章、文獻回顧 3 2.1油水汙染對於環境的影響 3 2.2材料潤濕性 4 2.2.1接觸角 4 2.2.2 Young’s equation 5 2.2.3 Wenzel equation 5 2.2.4 Cassie-Baxter equation 6 2.2.5破乳化 7 2.3特殊潤濕性材料 8 2.3.1天然特殊潤濕性材料 8 2.3.2人造特殊潤濕性材料 10 2.4纖維素 14 2.5海藻酸鈉 15 2.6氧化鈣 18 2.7植酸 19 2.8蛋白質 22 2.9生物降解 26 第三章、實驗方法與設計 29 3.1實驗材料 29 3.2實驗儀器 31 3.3材料改質 32 3.3.1氧化鈣製備 32 3.3.2超親水海藻酸鈉改質 32 3.3.2超親水植酸改質 33 3.4材料鑑定與樣品檢測 34 3.4.1場發射掃描式電子顯微鏡 (FE-SEM) 34 3.4.2水下油接觸角量測儀 (UWOCA) 35 3.4.3全反射式傅立葉轉換紅外線光譜儀 (ATR-FTIR) 36 3.4.4 3D數位光學顯微鏡 (Optical Microscope, OM) 36 3.4.5動態光散射粒徑分析儀 (Dynamic light scattering, DLS) 37 3.4.6庫倫卡爾費休滴定儀 (Karl Fischer Titrando, KFT) 38 3.4.7總有機碳分析儀 (Total organic carbon, TOC) 38 3.5材料效能表現 40 3.5.1潤濕性測試 40 3.5.1油水分離 40 3.5.2乳化液分離 42 3.5.3重複性測試 45 3.5.4惡劣環境測試 46 3.5.5生物降解 46 第四章、結果與討論 48 4.1超親水海藻酸鈉改質 48 4.1.1潤濕性測試 49 4.1.2改質前後布料微結構 54 4.1.3改質前後棉花微結構 57 4.1.4油水分離能力 60 4.1.5油多水少乳化液分離能力 63 4.1.6水多油少乳化液分離能力 71 4.1.7重複性測試結果 79 4.1.8惡劣環境對油水分離能力的影響 83 4.1.9生物降解速率 85 4.1.10效能比較 87 4.2超親水植酸改質 90 4.2.1水下油接觸角 91 4.2.2改質前後布料的紅外線光譜圖 92 4.2.3油水分離能力 93 4.2.4重複性測試 95 第五章、結論 96 第六章、參考文獻 97

[1] Y. Wei, H. Qi, X. Gong, S. Zhao, Specially wettable membranes for oil–water separation, Advanced Materials Interfaces 5(23) (2018).
[2] N. Zhang, X. Yang, Y. Wang, Y. Qi, Y. Zhang, J. Luo, P. Cui, W. Jiang, A review on oil/water emulsion separation membrane material, Journal of Environmental Chemical Engineering 10(2) (2022).
[3] Y. Cai, S.Q. Shi, Z. Fang, J. Li, Design, development, and outlook of superwettability membranes in oil/water emulsions separation, Advanced Materials Interfaces 8(18) (2021).
[4] B. Thasma Subramanian, J.P. Alla, J.S. Essomba, N.F. Nishter, Non-fluorinated superhydrophobic spray coatings for oil-water separation applications: An eco-friendly approach, Journal of Cleaner Production 256 (2020).
[5] C.E. Müller, A.O. De Silva, J. Small, M. Williamson, X. Wang, A. Morris, S. Katz, M. Gamberg, D.C.G. Muir, Biomagnification of perfluorinated compounds in a remote terrestrial food chain: lichen–caribou–wolf, Environmental Science & Technology 45(20) (2011) 8665-8673.
[6] B. Wang, W. Liang, Z. Guo, W. Liu, Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature, Chem Soc Rev 44(1) (2015) 336-61.
[7] M. Qu, Q. Liu, L. Liu, C. Yang, S. Yuan, F. Shi, L. Peng, S. Xiong, J. He, A superwettable functionalized-fabric with pH-sensitivity for controlled oil/water, organic solvents separation, and selective oil collection from water-rich system, Separation and Purification Technology 254 (2021).
[8] G. Ju, J. Liu, D. Li, M. Cheng, F. Shi, Chemical and equipment-free strategy to fabricate water/oil separating materials for emergent oil spill accidents, Langmuir 33(10) (2017) 2664-2670.
[9] M. Huettel, Oil pollution of beaches, Current Opinion in Chemical Engineering 36 (2022).
[10] C. Fan, C.J. Hsu, J.Y. Lin, Y.K. Kuan, C.C. Yang, J.H. Liu, J.H. Yeh, Taiwan's legal framework for marine pollution control and responses to marine oil spills and its implementation on T.S. Taipei cargo shipwreck salvage, Mar Pollut Bull 136 (2018) 84-91.
[11] X.Q. Zhao, F. Wahid, J.X. Cui, Y.Y. Wang, C. Zhong, Cellulose-based special wetting materials for oil/water separation: A review, International Journal of Biological Macromolecules 185 (2021) 890-906.
[12] L. Yu, M. Han, F. He, A review of treating oily wastewater, Arabian Journal of Chemistry 10 (2017) S1913-S1922.
[13] J. Son, J.Y. Lee, N. Han, J. Cha, J. Choi, J. Kwon, S. Nam, K.H. Yoo, G.H. Lee, J. Hong, Tunable wettability of graphene through nondestructive hydrogenation and wettability-based patterning for bioapplications, Nano Lett 20(8) (2020) 5625-5631.
[14] S. Fan, Y. Li, R. Wang, W. Ma, Y. Shi, W. Fan, K. Zhuo, G. Xu, Intelligent coatings with controlled wettability for oil-water separation, Nanomaterials (Basel) 12(18) (2022).
[15] C.H. Kung, P.K. Sow, B. Zahiri, W. Mérida, Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities, Advanced Materials Interfaces 6(18) (2019).
[16] Y. Jiang, C.H. Choi, Droplet retention on superhydrophobic surfaces: A critical review, Advanced Materials Interfaces 8(2) (2020).
[17] C. Chen, D. Weng, A. Mahmood, S. Chen, J. Wang, Separation mechanism and construction of surfaces with special wettability for oil/water separation, ACS Applied Materials & Interfaces 11(11) (2019) 11006-11027.
[18] E. Bormashenko, Why does the cassie–baxter equation apply?, Colloids and Surfaces A: Physicochemical and Engineering Aspects 324(1-3) (2008) 47-50.
[19] R. Zolfaghari, A. Fakhru’l-Razi, L.C. Abdullah, S.S.E.H. Elnashaie, A. Pendashteh, Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Separation and Purification Technology 170 (2016) 377-407.
[20] Y. Wang, C. Du, Z. Yan, W. Duan, J. Deng, G. Luo, Rapid demulsification and phase separation in a miniaturized centrifugal demulsification device, Chemical Engineering Journal 446 (2022).
[21] S. Hippmann, S.S. Ahmed, P. Fröhlich, M. Bertau, Demulsification of water/crude oil emulsion using natural rock alginite, Colloids and Surfaces A: Physicochemical and Engineering Aspects 553 (2018) 71-79.
[22] L. Sun, J. Guo, H. Chen, D. Zhang, L. Shang, B. Zhang, Y. Zhao, Tailoring materials with specific wettability in biomedical engineering, Advanced science (Weinheim, Baden-Württemberg, Germany)8(19) (2021) e2100126.
[23] S. Yang, X. Jin, K. Liu, L. Jiang, Nanoparticles assembly-induced special wettability for bio-inspired materials, Particuology 11(4) (2013) 361-370.
[24] M. Zhu, Y. Liu, M. Chen, Z. Xu, L. Li, Y. Zhou, Metal mesh-based special wettability materials for oil-water separation: A review of the recent development, Journal of Petroleum Science and Engineering 205 (2021).
[25] M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura, K. Uchida, Theoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf, Langmuir 31(26) (2015) 7355-63.
[26] J. Zhang, X. Huang, Y. Xiong, W. Zheng, W. Liu, M. He, L. Li, J. Liu, L. Lu, K. Peng, Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions, Separation and Purification Technology 280 (2022).
[27] H. Zhu, Y. Huang, X. Lou, F. Xia, Beetle-inspired wettable materials: from fabrications to applications, Materials Today Nano 6 (2019).
[28] X. Gou, Z. Guo, Underwater superoleophobic crucian fish scale: influence of ontogeny on surface morphologies and wettability, Journal of Bionic Engineering 16(6) (2019) 1061-1067.
[29] S.N. Aideo, D. Mohanta, Unusually diverse surface-wettability features found in the wings of butterflies across Lepidoptera order and evaluation of generic and vertical gibbosity-based models, Physica Scripta 96(8) (2021).
[30] G.D. Bixler, A. Theiss, B. Bhushan, S.C. Lee, Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings, Journal of Colloid and Interface Science 419 (2014) 114-33.
[31] Z.-X. Wang, C.-H. Lau, N.-Q. Zhang, Y.-P. Bai, L. Shao, Mussel-inspired tailoring of membrane wettability for harsh water treatment, Journal of Materials Chemistry A 3(6) (2015) 2650-2657.
[32] L. Li, Z. Xu, W. Sun, J. Chen, C. Dai, B. Yan, H. Zeng, Bio-inspired membrane with adaptable wettability for smart oil/water separation, Journal of Membrane Science 598 (2020).
[33] F. Nudelman, N.A. Sommerdijk, Biomineralization as an inspiration for materials chemistry, Angewandte Chemie International Edition in English 51(27) (2012) 6582-6596.
[34] X. Zhao, L. Cheng, R. Wang, N. Jia, L. Liu, C. Gao, Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation, Journal of Membrane Science 589 (2019).
[35] R. Xing, R. Huang, W. Qi, R. Su, Z. He, Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation, American Institute of Chemical Engineers Journal 64(10) (2018) 3700-3708.
[36] J. Wang, X. Ma, L. Su, C. Zhang, X. Dong, C. Teng, L. Jiang, C. Yu, Eco-friendly perforated kelp membrane with high strength for efficient oil/water separation in a complex environment, Separation and Purification Technology 282 (2022).
[37] Q.-Y. Cheng, X.-P. An, Y.-D. Li, C.-L. Huang, J.-B. Zeng, Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation, ACS Sustainable Chemistry & Engineering 5(12) (2017) 11440-11450.
[38] T.Y. Yu, Y.K. Tseng, T.H. Lin, T.C. Wang, Y.H. Tseng, Y.H. Chang, M.C. Wu, W.F. Su, Effect of cellulose compositions and fabrication methods on mechanical properties of polyurethane-cellulose composites, Carbohydr Polym 291 (2022) 119549.
[39] Y. Lv, Q. Li, Y. Hou, B. Wang, T. Zhang, Facile preparation of an asymmetric wettability janus cellulose membrane for switchable emulsions’ separation and antibacterial property, ACS Sustainable Chemistry & Engineering 7(17) (2019) 15002-15011.
[40] N.S.A. Rahman, M.F. Yhaya, B. Azahari, W.R. Ismail, Utilisation of natural cellulose fibres in wastewater treatment, Cellulose 25(9) (2018) 4887-4903.
[41] J. Nemoto, K. Nakamata, All-cellulose material prepared using aqueous zinc chloride solution, Cellulose 29(5) (2021) 2795-2803.
[42] C.B. Amara, N. Eghbal, N. Oulahal, P. Degraeve, A. Gharsallaoui, Properties of lysozyme/sodium alginate complexes for the development of antimicrobial films, Food Research International 89(Pt 1) (2016) 272-280.
[43] Y. Hu, T. Chen, X. Dong, Z. Mei, Preparation and characterization of composite hydrogel beads based on sodium alginate, Polymer Bulletin 72(11) (2015) 2857-2869.
[44] R. Ahmad Raus, W.M.F. Wan Nawawi, R.R. Nasaruddin, Alginate and alginate composites for biomedical applications, Asian Journal of Pharmaceutical Sciences 16(3) (2021) 280-306.
[45] S. Fu, A. Thacker, D.M. Sperger, R.L. Boni, I.S. Buckner, S. Velankar, E.J. Munson, L.H. Block, Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties, An Official Journal of the American Association of Pharmaceutical Scientists 12(2) (2011) 453-60.
[46] K. Liu, X. Lin, L. Chen, L. Huang, S. Cao, H. Wang, Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films, Journal of Agricultural and Food Chemistry 61(26) (2013) 6562-7.
[47] Y. Li, Y. Han, X. Wang, J. Peng, Y. Xu, J. Chang, Multifunctional hydrogels prepared by dual ion cross-linking for chronic wound healing, ACS Applied Materials & Interfaces 9(19) (2017) 16054-16062.
[48] Y. Yun, H. Wu, J. Gao, W. Dai, L. Deng, O. Lv, Y. Kong, Facile synthesis of Ca(2+)-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier, Materials Science & Engineering C-Materials for Biological Applications 108 (2020) 110380.
[49] R. Atchudan, S. Perumal, J. Joo, Y.R. Lee, Synthesis and characterization of monodispersed spherical calcium oxide and calcium carbonate nanoparticles via simple pyrolysis, Nanomaterials (Basel) 12(14) (2022).
[50] X. Liang, R. Dai, S. Chang, Y. Wei, B. Zhang, Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects 650 (2022).
[51] M. Prajapati, H. Shah, Impacts and industrial applications of phytic acid and phytase, Journal of Pure and Applied Microbiology 16(4) (2022) 2292-2302.
[52] A. Diouf-Lewis, S. Commereuc, V. Verney, Toward greener polyolefins: Antioxidant effect of phytic acid from cereal waste, European Polymer Journal 96 (2017) 190-199.
[53] A. Ghilan, L.E. Nita, D. Pamfil, N. Simionescu, N. Tudorachi, D. Rusu, A.G. Rusu, M. Bercea, I. Rosca, D.E. Ciolacu, A.P. Chiriac, One-step preparation of carboxymethyl cellulose-phytic acid hydrogels with potential for biomedical applications, Gels 8(10) (2022).
[54] L. Zhang, D. Yi, J. Hao, M. Gao, One‐step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy, Polymers for Advanced Technologies 32(3) (2020) 1176-1186.
[55] N. Du, F. Ye, J. Sun, K. Liu, Stimuli-responsive natural proteins and their applications, Chembiochem 23(6) (2022) e202100416.
[56] M.J. Harrington, P. Fratzl, Natural load-bearing protein materials, Progress in Materials Science 120 (2021).
[57] Y. Wang, P. Katyal, J.K. Montclare, Protein-engineered functional materials, Advanced Healthcare Materials 8(11) (2019) e1801374.
[58] N.C. Abascal, L. Regan, The past, present and future of protein-based materials, Open Biology 8(10) (2018).
[59] S. Zhu, W. Zeng, Z. Meng, W. Luo, L. Ma, Y. Li, C. Lin, Q. Huang, Y. Lin, X.Y. Liu, Using wool keratin as a basic resist material to fabricate precise protein patterns, Advanced Materials 31(28) (2019) e1900870.
[60] F. Li, T. Liu, W. Gu, Q. Gao, J. Li, S.Q. Shi, Bioinspired super-tough and multifunctional soy protein-based material via a facile approach, Chemical Engineering Journal 405 (2021).
[61] I. Vroman, L. Tighzert, Biodegradable polymers, Materials 2(2) (2009) 307-344.
[62] X. Su, W. Yang, K. Li, H. Xie, Y. Wu, Y. Li, X. Xie, W. Wu, Fully organic and biodegradable superhydrophobic sponges derived from natural resources for efficient removal of oil from water, Separation and Purification Technology 277 (2021).
[63] R. Krishnamoorthi, R. Anbazhagan, H.-C. Tsai, C.-F. Wang, J.-Y. Lai, Biodegradable, superwettable caffeic acid/chitosan polymer coated cotton fibers for the simultaneous removal of oils, dyes, and metal ions from water, Chemical Engineering Journal 427 (2022).
[64] J. Bang, S. Park, S.W. Hwang, J.K. Oh, H. Yeo, H.J. Jin, H.W. Kwak, Biodegradable and hydrophobic nanofibrous membranes produced by solution blow spinning for efficient oil/water separation, Chemosphere 312(Pt 1) (2023) 137240.
[65] J. Widakdo, T.M. Chen, M.C. Lin, J.H. Wu, T.L. Lin, P.J. Yu, W.S. Hung, K.R. Lee, Evaluation of the antibacterial activity of eco-friendly hybrid composites on the base of oyster shell powder modified by metal ions and LLDPE, Polymers (Basel) 14(15) (2022).
[66] X. Liu, Q. Zhang, B. Peng, Y. Ren, B. Cheng, C. Ding, X. Su, J. He, S. Lin, Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid, Journal of Cleaner Production 243 (2020).
[67] H.L. Abd El-Mohdy, S. Ghanem, Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation, Journal of Polymer Research 16(1) (2008) 1-10.
[68] D. Daksa Ejeta, C.-F. Wang, S.-W. Kuo, J.-K. Chen, H.-C. Tsai, W.-S. Hung, C.-C. Hu, J.-Y. Lai, Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation, Chemical Engineering Journal 402 (2020).
[69] Z. Chu, S. Seeger, Multifunctional hybrid porous micro-/nanocomposite materials, Advanced Materials 27(47) (2015) 7775-81.
[70] X. Han, J. Hu, K. Chen, P. Wang, G. Zhang, J. Gu, C. Ding, X. Zheng, F. Cao, Self-assembly and epitaxial growth of multifunctional micro-nano-spheres for effective separation of water-in-oil emulsions with ultra-high flux, Chemical Engineering Journal 352 (2018) 530-538.
[71] Z. Wang, C. Xiao, Z. Wu, Y. Wang, X. Du, W. Kong, D. Pan, G. Guan, X. Hao, A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation, Journal of Materials Chemistry A 5(12) (2017) 5895-5904.
[72] H. Xiao, Y. Cui, Y. Wang, H. Li, G. Chen, X. Huang, B. Shi, Synergistic combination of the capillary effect of collagen fibers and size-sieving merits of metal–organic frameworks for emulsion separation with high flux, Industrial & Engineering Chemistry Research 59(33) (2020) 14925-14934.
[73] C. Chen, S. Chen, L. Chen, Y. Yu, D. Weng, A. Mahmood, J. Wang, I.P. Parkin, C.J. Carmalt, Underoil superhydrophilic metal felt fabricated by modifying ultrathin fumed silica coatings for the separation of water-in-oil emulsions, ACS Applied Materials & Interfaces 12(24) (2020) 27663-27671.
[74] H.-H. Tseng, J.-C. Wu, Y.-C. Lin, G.-L. Zhuang, Superoleophilic and superhydrophobic carbon membranes for high quantity and quality separation of trace water-in-oil emulsions, Journal of Membrane Science 559 (2018) 148-158.
[75] Y. Ding, S. Xu, H. Zhang, J. Zhang, Z. Qiu, H. Chen, J. Wang, J. Zheng, J. Wu, One-step fabrication of a micro/nanosphere-coordinated dual stimulus-responsive nanofibrous membrane for intelligent antifouling and ultrahigh permeability of viscous water-in-oil emulsions, ACS Applied Materials & Interfaces 13(23) (2021) 27635-27644.
[76] X. Zhang, Y. Liu, F. Zhang, W. Fang, J. Jin, Y. Zhu, Nanofibrous Janus membrane with improved self-cleaning property for efficient oil-in-water and water-in-oil emulsions separation, Separation and Purification Technology 308 (2023).
[77] C.F. Wang, L.T. Chen, Preparation of superwetting porous materials for ultrafast separation of water-in-oil emulsions, Langmuir 33(8) (2017) 1969-1973.
[78] D. Qian, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Multilayer network membranes based on evenly dispersed nanofibers/Co3O4 nanoneedles for high-efficiency separation of micrometer-scale oil/water emulsions, Advanced Materials Interfaces 5(21) (2018).
[79] F. Li, B. Bhushan, Y. Pan, X. Zhao, Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions, Journal of Colloid and Interface Science 548 (2019) 123-130.
[80] S. Yang, L. Chen, S. Liu, W. Hou, J. Zhu, Q. Zhang, P. Zhao, Robust bifunctional compressed carbon foam for highly effective oil/water emulsion separation, ACS Applied Materials & Interfaces 12(40) (2020) 44952-44960.
[81] L. Zhang, X. Yang, B. Jiang, Y. Sun, Z. Gong, N. Zhang, S. Hou, J. Li, N. Yang, Superhydrophilic and underwater superoleophobic Ti foam with robust nanoarray structures of TiO2 for effective oil-in-water emulsion separation, Separation and Purification Technology 252 (2020).
[82] B. Wang, C. Chen, H. Liu, B. Xia, Y. Fan, T. Chen, WO3/TiO2 superhydrophilic and underwater superoleophobic membrane for effective separation of oil-in-water emulsions, Thin Solid Films 665 (2018) 9-16.
[83] Y. Wang, J. Wang, Y. Ding, S. Zhou, F. Liu, In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion, Journal of Membrane Science 621 (2021).
[84] X. Zhu, L. Zhu, H. Li, C. Zhang, J. Xue, R. Wang, X. Qiao, Q. Xue, Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification, Journal of Membrane Science 630 (2021).
[85] C. Chen, Q. Liu, Z. Yang, Q. Ye, Q.-F. An, Substrate-independent fabrication of superhydrophilic membrane based on dopamine methacrylamide and zwitterionic substance for effective oil-in-water emulsion separation, Journal of the Taiwan Institute of Chemical Engineers 139 (2022).
[86] L. Han, X. Li, F. Li, H. Zhang, G. Li, Q. Jia, S. Zhang, Superhydrophilic/air-superoleophobic diatomite porous ceramics for highly-efficient separation of oil-in-water emulsion, Journal of Environmental Chemical Engineering 10(5) (2022).
[87] Y. Ma, X. Luo, L. Liu, C. Zhang, X. Shang, J. Yao, Eco-friendly, efficient and durable fireproof cotton fabric prepared by a feasible phytic acid grafting route, Cellulose 28(6) (2021) 3887-3899.

無法下載圖示 全文公開日期 2026/08/15 (校內網路)
全文公開日期 2026/08/15 (校外網路)
全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE