簡易檢索 / 詳目顯示

研究生: 黃秉毅
Bing-Yi Huang
論文名稱: 低碳鋼熱浸鍍鋁及銲接之高溫疲勞
High-temperature Fatigue of Hot-dip Aluminide Coating on Mild Steel and Weldments
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 林原慶
Yuan-ching Lin
林招松
Chao-sung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 125
中文關鍵詞: 低碳鋼熱浸鍍鋁銲接高溫疲勞
外文關鍵詞: Mild Steel, Hot-dip Aluminide, Weldments, High-temperature Fatigue
相關次數: 點閱:323下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對低碳鋼、低碳鋼熱浸鍍鋁及低碳鋼同質銲接件,於540 °C、288 °C進行高溫潛變及疲勞試驗。疲勞試驗的試片承受雙軸向應力作用,分別為縱向拉伸應力、橫向覆變疲勞應力,藉此探討低碳鋼原材與低碳鋼熱浸鍍鋁在高溫中的機械行為及熱浸鍍鋁作用。
    實驗結果顯示,在試驗反覆次數104次以上之疲勞壽命時,低碳鋼於540 °C高溫承受147 MPa會在104循環次數破斷,低碳鋼熱浸鍍鋁則會超過106循環次數才破斷。熱浸鍍鋁後鋁化層內層的舌片狀Fe-Al介金屬層能有效抵抗拉伸軸向應力,使得底材不易向內頸縮,大幅提升低碳鋼高溫潛變時間、延長疲勞壽命。
    低碳鋼同質銲接件的銲道在288 °C承受220 MPa拉伸軸向應力及覆變疲勞應力會在105循環次數斷裂。在288 °C高溫疲勞過程中,低碳鋼抗拉強度、抗高溫疲勞等機械性質均優於540 °C之環境。


    This study performed a creep and fatigue test on mild steel, hot-dip aluminide coating on mild steel, and weldments at high temperatures of 540 °C and 288 °C. The specimens were given two-axial stresses: a longitudinal tensile stress and a lateral repeated fatigue stress. The fatigue behavior of mild steel and hot-dip aluminide mild steel at high temperatures was discussed.
    The results show that the mild steel fractured under 147 MPa at 540 °C after reaching 104 fatigue cycles, whereas the hot-dip aluminide mild steel fractured after completing 106 fatigue cycles. The tongue-like Fe-Al intermetallic layer of the alumnide steel can effectively resist the axial tensile stress, preventing the substrate from necking and thereby significantly lengthening the creeping process and prolonging the limit life.
    The mild steel weldments fractured under the tensile stress and repeated fatigue stress of 220 MPa at 288 °C upon reaching 105 fatigue cycles. The mechanical properties of mild steel, such as tensile strength and high-temperature fatigue resistance, are better at 288 °C than at 540 °C.

    第一章 前言 1 第二章 文獻回顧 3 2.1 潛變 3 2.1.1 高溫潛變行為 4 2.1.2 潛變破壞 7 2.2 疲勞 12 2.2.1 疲勞壽命 12 2.2.2 修正疲勞極限 16 2.2.3 雙軸向受力 19 2.2.4 疲勞破壞 20 2.3 熱浸鍍鋁 22 2.3.1 目的與原理 22 2.3.2 熱浸純鋁與鋁矽之鋁化層 23 2.3.3 鋁化層內孔洞生成 29 2.3.4 複合材料定負載拉伸 30 2.3.5 鋁化層破壞 31 2.4 銲接 33 2.4.1 鎢極氣體保護電弧銲 33 2.4.2 銲接件結構 35 第三章 實驗方法 36 3.1 實驗材料前置準備 37 3.1.1 試片製作 37 3.1.2 熱浸鍍鋁製程 39 3.2 常溫試驗 41 3.3 高溫試驗 42 3.3.1 高溫定負載拉伸試驗 42 3.3.2 高溫疲勞試驗 45 3.3.3 熱浸鍍鋁高溫試驗 47 3.4 分析設備與方法 48 3.4.1 分析設備 48 3.4.2 分析方法 48 第四章 結果與討論 50 4.1 低碳鋼常溫機械性質 50 4.2 高溫試驗 51 4.2.1 高溫潛變試驗 51 4.2.2 高溫疲勞試驗 56 4.3 低碳鋼熱浸鍍鋁 61 4.3.1 鋁化層之顯微結構 61 4.3.2 低碳鋼熱浸鋁後高溫潛變試驗 64 4.3.3 低碳鋼熱浸純鋁後高溫疲勞試驗 75 4.3.4 低碳鋼熱浸鋁-10矽高溫疲勞試驗 82 4.3.5 熱浸鋁(矽)塗層對高溫機械性質的作用 85 4.4 低碳鋼同質銲接件288 ℃疲勞試驗 87 第五章 結論 90 參考文獻 91 附錄A 疲勞試驗相關標準 98 附錄B 高溫疲勞試驗機 102

    [1] C.-J. Wang and S.-M. Chen, "The high-temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel," Surface and Coatings Technology, vol. 200, pp. 6601-6605, 2006.
    [2] C.-J. Wang and C.-C. Li, "Corrosion behaviors of AISI 1025 steels with electroless nickel/aluminized coatings in NaCl-induced hot corrosion," Surface and Coatings Technology, vol. 177-178, pp. 37-43, 2004.
    [3] S. R. Pillai, N. S. Barasi, and H. S. Khatak, "Behavior of Oxide Scale on 9Cr–1Mo Steel Under Varying External Stresses," Oxidation of Metals, vol. 53, 2000.
    [4] Z. Tökei, H. Viefhaus, and H. Grabke, "Initial stages of oxidation of a 9CrMoV-steel: role of segregation and martensite laths," Applied surface science, vol. 165, pp. 23-33, 2000.
    [5] K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura, "High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L," International Journal of Fatigue, vol. 30, pp. 1978-1984, 2008.
    [6] X. Li, T. F. Jing, M. M. Lu, R. Xu, B. Y. Liang, and J. W. Zhang, "Fatigue Property of Nano-grained Delaminated Low-carbon Steel Sheet," Journal of Materials Science & Technology, vol. 27, pp. 364-368, 2011.
    [7] M. Okayasu, K. Sato, M. Mizuno, D. Hwang, and D. Shin, "Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel," International Journal of Fatigue, vol. 30, pp. 1358-1365, 2008.
    [8] G. Zengliang and Z. Kangda, "Comparison of the fracture and fatigue properties of 16MnR steel weld metal, the HAZ and the base metal," Journal of materials processing technology, vol. 63, pp. 559-562, 1997.
    [9] 鄭維仁, "鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為," 國立台灣科技大學機械所博士學位論文, 2011.
    [10] A. Bahadur and O. Mohanty, "Structural studies of hot dip aluminized coatings on mild steel," Materials Transactions, JIM, vol. 32, pp. 1053-1061, 1991.
    [11] R. Richards, R. Jones, P. Clements, and H. Clarke, "Metallurgy of continuous hot dip aluminizing," International materials reviews, vol. 39, pp. 191-212, 1994.
    [12] D. Wang and Z. Shi, "Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel," Applied Surface Science, vol. 227, pp. 255-260, 2004.
    [13] L. Yajiang, W. Juan, Z. Yonglan, and X. Holly, "Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel," Bulletin of Materials Science, vol. 25, pp. 635-639, 2002.
    [14] H. Evans, A. Strawbridge, R. Carolan, and C. Ponton, "Creep effects on the spallation of an alumina layer from a NiCrA1Y coating," Materials Science and Engineering: A, vol. 225, pp. 1-8, 1997.
    [15] A. Smigelskas and E. Kirkendall, "Zinc diffusion in alpha brass," Trans. Aime, vol. 171, pp. 130-142, 1947.
    [16] A. Güral, B. Bostan, and A. Özdemir, "Heat treatment in two phase region and its effect on microstructure and mechanical strength after welding of a low carbon steel," Materials & design, vol. 28, pp. 897-903, 2007.
    [17] M. Jafarzadegan, A. Abdollah-Zadeh, A. Feng, T. Saeid, J. Shen, and H. Assadi, "Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel," Journal of Materials Science & Technology, vol. 29, pp. 367-372, 2013.
    [18] R. E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, 1973.
    [19] A. Cottrell and R. Stokes, "Effects of temperature on the plastic properties of aluminium crystals," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1955, pp. 17-34.
    [20] M. Tamura and F. Abe, "Changes in Estimated Dislocation Density during Creep in Martensitic Heat-Resistant Steel," Journal of Materials Science Research, vol. 4, pp. 48, 2015.
    [21] C. M. Zener and S. Siegel, "Elasticity and Anelasticity of Metals," The Journal of Physical Chemistry, vol. 53, pp. 1468, 1949.
    [22] K. Funke, "Jump relaxation in solid electrolytes," Progress in Solid State Chemistry, vol. 22, pp. 111-195, 1993.
    [23] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. Sanders, and S. B. Warner, The science and design of engineering materials: Irwin Chicago, 1995.
    [24] A. Abdel-Latif, "An Overview of the Applications of NDI/NDT in Engineering Design for Structural Integrity and Damage Tolerance in Aircraft Structures," in Damage and Fracture Mechanics, ed: Springer, 2009, pp. 93-100.
    [25] E. A. Brandes, "Smithells Metal Reference Book," 6th ed ed, 1983, pp. 22-128 to 22-131.
    [26] J. E. Shigley, C. R. Mischke, R. G. Budynas, X. Liu, and Z. Gao, Mechanical engineering design vol. 89: McGraw-Hill New York, 1989.
    [27] J. Schijve, "Fatigue of structures and materials in the 20th century and the state of the art," International Journal of Fatigue, vol. 25, pp. 679-702, 2003.
    [28] Y.-Y. Chang, C.-C. Tsaur, and J. C. Rock, "Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation," Surface and Coatings Technology, vol. 200, pp. 6588-6593, 2006.
    [29] C.-J. Wang and S.-M. Chen, "Microstructure and cyclic oxidation behavior of hot dip aluminized coating on Ni-base superalloy Inconel 718," Surface and Coatings Technology, vol. 201, pp. 3862-3866, 2006.
    [30] 滿志謙, "高溫應力對低碳鋼熱浸鍍鋁層之影響," 國立台灣科技大學機械所碩士學位論文, 2010.
    [31] J.-H. Yoo, K.-S. Yun, R. S. Kalubarme, C.-N. Park, and C.-J. Park, "Hydrogen generation using the corrosion of Al-Sn and Al-Si alloys in an alkaline solution," Metals and Materials International, vol. 20, pp. 619-627, 2014.
    [32] Y. Guo, J. Liang, X. Zhang, W. Tang, Y. Zhao, and G. Rao, "Effects of Mn and Cu doping in La (T, Al) 13 (T= Fe, Co) on crystal structure and magnetic properties," Journal of alloys and compounds, vol. 257, pp. 69-74, 1997.
    [33] E. Popiel, M. Tuszyński, W. Zarek, and T. Rendecki, "Investigation of Fe 3− x V x Al alloys with DO 3 type structure by X-ray, magnetostatic and Mössbauer effect methods," Journal of the Less Common Metals, vol. 146, pp. 127-135, 1989.
    [34] U. Burkhardt, M. Ellner, and Y. Grin, "Powder diffraction data for the intermetallic compounds Co 2 Al 5, monoclinic m-Co 4 Al 13 and orthorhombic o-Co 4 Al 13," Powder Diffraction, vol. 11, pp. 123-128, 1996.
    [35] R. Corby and P. Black, "The structure of FeAl2 by anomalous dispersion methods," Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 29, pp. 2669-2677, 1973.
    [36] U. Burkhardt, Y. Grin, M. Ellner, and K. Peters, "Structure refinement of the iron-aluminium phase with the approximate composition Fe2Al5," Acta Crystallographica Section B: Structural Science, vol. 50, pp. 313-316, 1994.
    [37] S. Bull, "Failure modes in scratch adhesion testing," Surface and Coatings Technology, vol. 50, pp. 25-32, 1991.
    [38] H. C. Yildirim and G. B. Marquis, "Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact," International Journal of Fatigue, vol. 44, pp. 168-176, 2012.
    [39] M. Itatani, J. Fukakura, M. Asano, M. Kikuchi, and N. Chujo, "Fatigue crack growth behavior of weld heat-affected zone of type 304 stainless steel in high temperature water," Nuclear engineering and design, vol. 153, pp. 27-34, 1994.
    [40] 朱慶霖, "異質銲件熱浸鍍鋁層於高溫應用之破壞機制," 國立台灣科技大學機械所碩士學位論文, 2015.
    [41] W. Chuaiphan, S. Chandra-Ambhorn, B. Sornil, and W. Bleck, "Microstructure, Mechanical and Corrosion Behaviour of Dissimilar Weldments between AISI 304 Stainless Steels and AISI 1020 Carbon Steels Produced by Gas Tungsten Arc Welding Using Different Consumables," Key Engineering Materials, vol. 410-411, pp. 533-541, 2009.
    [42] Q.-L. ZHU, "Failure Mechanism of the Hot-dipped Aluminide Coating on Dissimilar Weldments in High Temperature Applications," 2015.
    [43] 姜志華, 蔡金, "銲接冶金概論," 徐氏基金會, 1987.

    QR CODE