簡易檢索 / 詳目顯示

研究生: 丁肇柏
Ding Zhao-Bo
論文名稱: 稀薄氣體通過微流道之氣體行為分析
Experimental investigation of diluted gas behavior flowing through microchannels
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 田維欣
Wei-Hsin Tien
陳國聲
Guo-sheng Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 微流道稀薄氣體
外文關鍵詞: Microchannel, Thin gas
相關次數: 點閱:243下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用微機電技術製造出微流道系統, 並且由於特徵尺寸的縮小使得 Knudsen
    number 增加, 當氣體漸漸由 continuue regime 進入 slip flow regime 時, 傳統的無滑
    移條件及理論將不再適用於此, 當氣體進入稀薄情況下, 則必須考慮微觀中氣體分
    子與分子之間以及氣體分子與固體邊界所產生的動量交換, 並且將氣體分子與固體
    邊界之間的動量交換定義為切線動量修正係數 (TMAC), 此參數為本篇論文中主要
    探討影響質量流率的重要參數之一。
    在實驗中量測方式為雙槽累積量測系統, 使用此量測方式比起傳統的單槽累積
    量測系統最大的差異在於可以將溫度所造成的質量流率變化量降低, 並且準確的量
    測出由實驗氣體流入鋼瓶內所造的質量流率得變化量。
    在實驗參數設定上主要控制上下游壓力進而改變氣體紐森數, 則在本篇論文中
    將使用紐森數將氣體運動行為分為 slip flow 與 transition flow 來進行分析。
    本實驗是結果顯示, 氣體在 slip flow 時, 主要影響質量流率得參數為上下游所造
    成的壓差變化, 並且得到另一個重要結論為在相同流道中即使實驗氣體不同, 但由
    實驗中得到 TAMC 並不會隨著氣體的不同具有太明顯得改變, 因此在這實驗結果
    下可將 TMAC 視為定值, 換句話說, 在一種流道中僅具有一種 TMAC 值, 且 TAMC
    為常數。
    氣體在 transition flow 時, 先前所有推導出的公式將不再適用於此, 故在實驗設
    定上將固定上下游的壓差, 主要為觀察氣體密度與質量流率之間的關係, 由實驗結
    果顯示, 在此部分主要影響質量流率的參數為單位時間內通過出口截面的分子個
    數, 但是當氣體漸漸由 transition flow 進入 free molecular 時, 由於氣體分子在微流道
    中流動時與其他氣體分子碰撞的機會極小, 進而使得質量流率漸漸的與紐森數無
    關。


    The micro-channel system was fabricated using MEMS technology and Knudsen was made due to the reduction in feature size
    The number increases, when the gas gradually enters the slip flow regime by the continuue regime, the traditional slipless
    The shifting conditions and theory will no longer apply to this. When the gas enters a thin condition, the microscopic gas fraction must be considered.
    Exchange of momentum between the sub-molecule and between the gas molecules and the solid boundary, and the gas molecules and solids
    The momentum exchange between the boundaries is defined as the tangent momentum correction factor (TMAC), which is the main
    Explore one of the important parameters affecting mass flow rate.
    In the experiment, the measurement method is a double-slot cumulative measurement system, which is compared with the traditional single-slot accumulation.
    The biggest difference in the measurement system is that the amount of mass flow rate change caused by temperature can be reduced, and the exact amount
    The amount of change in the mass flow rate created by the flow of the test gas into the cylinder was measured.
    In the experimental parameter setting, the main control of upstream and downstream pressure and then change the gas Newson number, in this paper
    The gas motion behavior will be divided into slip flow and transition flow using Newson numbers for analysis.
    The results of this experiment show that when the gas is in slip flow, the parameters that mainly affect the mass flow rate are made upstream and downstream.
    The pressure difference is changed, and another important conclusion is that even if the experimental gas is different in the same flow channel,
    The TAMC obtained in the experiment does not change too much with the difference of the gas, so the result of this experiment
    TMAC can be considered as a fixed value, in other words, there is only one TMAC value in one flow channel, and TAMC
    Is a constant.
    When the gas is in transition flow, all the previously derived formulas will no longer apply to this, so in the experimental setup
    The pressure difference between the upstream and the downstream will be fixed, mainly to observe the relationship between the gas density and the mass flow rate.
    It is shown that the parameters that mainly affect the mass flow rate in this section are the molecules passing through the outlet section per unit time.
    Number, but when the gas gradually enters the free molecular by the transition flow, due to the gas molecules in the microchannel
    The chance of collision with other gas molecules in the middle flow is extremely small, which leads to the mass flow rate gradually increasing with the Newson number.
    turn off.

    摘要................................................................................................................................ i 本目錄............................................................................................................................ iv 圖目錄............................................................................................................................ vi 表目錄............................................................................................................................ vii 第一章 導論.................................................................................................................. 1 1.1 研究背景....................................................................................................... 1 1.2 文獻回顧....................................................................................................... 4 1.3 論文架構....................................................................................................... 5 第二章 理論分析.......................................................................................................... 6 2.1 無滑移流動................................................................................................... 6 2.1.1 圓管流........................................................................................... 6 2.1.2 二維平板流動............................................................................... 7 2.2 滑移流動....................................................................................................... 8 2.2.1 滑移速度之邊界條件................................................................... 8 2.2.2 滑移流的質量流率推導............................................................... 8 2.3 質量流率與切線動量修正係數 (TMAC) 的關係 ...................................... 16 第三章 微流道晶片與陽極封裝.................................................................................. 17 3.1 微流道晶片設計........................................................................................... 17 3.2 陽極封裝....................................................................................................... 18 3.2.1 陽極封裝原理與設備................................................................... 18 3.2.2 陽極封裝鍵結步驟....................................................................... 22 3.3 介面接合....................................................................................................... 23 第四章 量測方法與實驗設備...................................................................................... 25 4.1 量測方法....................................................................................................... 25 4.2 實驗設備....................................................................................................... 27 4.3 實驗步驟....................................................................................................... 31 4.3.1 實驗前處理................................................................................... 31 4.3.2 實驗過程....................................................................................... 32 iii 目 錄 iv 第五章 實驗參數與結果討論...................................................................................... 34 5.1 實驗參數....................................................................................................... 34 5.1.1 實驗氣體選用............................................................................... 34 5.1.2 實驗分子模型選用....................................................................... 36 5.1.3 實驗壓力參數............................................................................... 36 5.2 實驗結果與討論........................................................................................... 36 5.2.1 實驗質量流率參數求取............................................................... 36 5.2.2 實驗質量流率比較....................................................................... 53 第六章 結論及未來展望.............................................................................................. 56 6.1 結論............................................................................................................... 56 6.2 未來展望....................................................................................................... 57 參考文獻........................................................................................................................ 58

    [1] R. Prud’homme, T. Chapman, and J. Bowen, “Laminar compressible flow in a tube, “ Appl.
    Sci. Res., vol. 43, 1986, pp. 67-74
    [2] A. Beskok and G. Karniadakis, “Simulation of heat and momentum transfer in microgeometries,
    “ 1993, AIAA Paper 93-3269.
    [3] K. Pong, C. Ho, J. Liu, and Y.Tai, “Non-linear pressure distribution in uniform microchannels,
    “ in Appl, Macrofabrication to Fluid Mechanics, ASME winter Annu. Meet., Chicago,
    IL, Nov. 1994, pp. 51−56.
    [4] J. Harley, Y. Huang, H. Bau, and J. N. Zemel, “Gas flow in micro-channels,“ J. Fluid Mech.,
    vol. 284, 1995, pp. 257−274.
    [5] Wataru Sugiyama, Tadashi and Kenji Nakamori, “Rarefied gas flow between two flat plates
    with two dimensional surface roughness,“Vacuum, 1996, vol. 47, pp. 791−794..
    [6] Errol B.Arkilic, Martin A. Schmidt, and Kenneth S. Breuer “Gaseous Slip Flow in Long
    Microchannel,“ Journal of Microelectromechanical Systems, 1997, 6, pp. 167−178.
    [7] E. B.Arkilic, M. A. Schmidt, and K. S. Breuer “Sub-nanomol per second flow measurement
    near atmospheric pressure,“ 1998.
    [8] Errol B.Arkilic, Kenneth S. Breuer, and Martin A. Schmidt, “Mass flow and tangential momentum
    accommodation in silicon micromachined channels,“Journal of Fluid Mechanics,
    2001, 437, pp. 29−43.
    [9] Jean Maurer, Patrick Tabeling, Pierre Joseph, Herve Willaime, “Second-order slip laws in
    microchannels for helium and nitrogen,“ Physics of Fluids, vol. 15, 2003.
    [10] A. Graur, J. G. Meolans, D. E. Zeitoun, “Analytical and numerical description for isothermal
    gas flows in microchannels,“ Physics of Fluids, 2006, vol. 15.
    [11] Timothee Ewart, I. A. Graur, T. Ewart, J. G. Meolans, “Tangential momemtum accommodation
    in microtube,“ Microuidics and Nanouidics, 2007, vol. 3, pp. 689−695.
    [12] Pierre Perrier, Irina Graur, T. Ewart, J. G. Meolans, “Mass flow rate measurements in mcrotubes:
    From hydrodynamic to near free molecular regime,“ Physics of Fluids, 2011,
    vol. 23.
    58
    [13] H Yamaguchi, Y Matsuda, T Niimi “Tangential Momentum Accommodation Coefficient
    measurements for various materials and gas species,“Journal of Physics: Conference
    Series, 2012, vol. 362.
    [14] H. Sun, M. Faghri,“Effect of surface roughness on nitrogen flow in a Microchannel using
    the direct simulation Monte Carlo method,“ Numerical Heat Transfer, Part A, 2003, vol.
    43.
    [15] Wang M, Li Z,“Simulations for gas flows in microgeometries using the direct simulation
    Monte Carlo method,“ International Journal of Heat and Fluid Flow, 2004, vol. 25, pp.
    975-985.
    [16] Yan Ji, Kun Yuan, and J.N. Chung,“Numerical simulation of wall roughness on gaseous
    flow and heat transfer in a micochannel,“ Internal Jounal of Heat and Mass Transfer, 2-
    005, 49, 1329−1339.
    [17] Magnus Wetterhall, Stefan Nilsson, Karin E. Markides, and Jonas Bergquist, “A Condu-
    Ctive Polymeric Material Used for Nanospray Needle and Low-Flow Sheathless Electro
    spray Ionization Applications,“ Analytical Chemistry, 2002, vol. 74, pp. 239−245.
    [18] Jan A. Dziuban(2006), Bonding in microsystem technology, Springer Series in Advanced
    Microelectronics, Vol. 24.
    [19] Frank M. White(2006), Viscous Fluid Flow, McGraw-Hill, New York.
    [20] Eric F. May, Robert F. Berg, and Michael R. Moldover, “Reference Viscosities of H2,
    CH4, Ar, and Xe at Low Densities,” International Journal of Thermophysics, Aug. 200-
    7, vol. 28, No. 4, pp.1085-1110.
    [21] R. Byron Bird, Charles F. Curtiss, and Joseph O. Hirschfelder(1954), Molecular Theory
    of Gases and Liquids, Wiley, New York.

    QR CODE