簡易檢索 / 詳目顯示

研究生: 陳美玲
SYLVIANA - (SUTANTO)
論文名稱: 利用米糠培養油酵母得到單细胞油以生產生質柴油
RICE BRAN VALORIZATION TO PRODUCE SINGLE CELL OILS FROM OLEAGINOUS YEASTS FOR BIODIESEL PRODUCTION
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Felycia Edi Soetaredjo
Felycia Edi Soetaredjo
Suryadi Ismadji
Suryadi Ismadji
Setiyo Gunawan
Setiyo Gunawan
Truong Chi Thanh
Truong Chi Thanh
Huynh Lien Huong
Huynh Lien Huong
王孟菊
Wang, Meng Jiy
李振綱
Lee, Cheng Kang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 153
中文關鍵詞: 生質柴油米糠多油酵母微生物油脂發酵
外文關鍵詞: oleaginous yeasts, microbial lipids, Y. lipolytica, L. starkeyi
相關次數: 點閱:280下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於原油蘊藏量逐漸減少,再生能源在許多應用上,例如運輸,終將逐漸取代原油。生質柴油為常見之再生能源,可從植物油或多油微生物(酵母、黴菌、細菌)所產之單細胞油為原料而產生。本研究以米糠水解液為原料培養兩種多油酵母 (Y.lipolytica and L. starkeyi) 以生產單細胞油。使用米糠因為它是主要農業副 產物之一,特別是在亞洲。米糠用稀硫酸水解得到可發酵醣。本研究並探討幾種方法對從米糠水解液中去除會影響發酵時生質生長之抑制物之效果。發酵時改變操作條件及發酵模式(一階段或二階段),目標是得到最高脂質含量或脂質產 率。當使用Y. lipolytica 時所得最高生質量及脂質 含量分別為14.3 g/L 及 10%而 使 用 L. starkeyi 時如果是添加葡萄糖餘位去除抑 制物之米糠水解液,則得到 26.2 g/L 及 60.35%;此二值變成 19.8 g/L 及 65.55% 如果酵母菌重新懸浮於葡 萄糖液 中。所得到單細胞油脂之脂肪酸分佈與植物油相似,最多的是棕梠酸 及油酸;是以此單細胞油可做為生產生質柴油之原料。 本研究進一步發現,希 硫酸水解後之乾燥殘留米糠可同時作為生產生質柴油時之料源及觸媒。每克乾殘餘米糠含有大於 1 mmol 之酸位置 (acid sites)。當在次 臨界反應器中進行 2% 或 3%乾 殘餘米 糠之轉酯化時, 即使不使用額外氣體也 可以在短時間內得到 87-89% 脂肪酸甲酯 產率及 94-98% 轉化率。本研究結果 顯示有潛力利用木質 纖 維素來 生產有經濟價 值之產物。


As crude oil reserves dwindle, renewable energies will replace it to fulfill the demand in sectors such as transportation. One of the common renewable and sustainable green energy proposed is biodiesel, which is usually derived from plant oils or single cell oils from oleaginous microorganisms (yeasts, molds, bacteria). In the present study, using rice bran hydrolysate as the nutrient, two oleaginous yeasts (Y. lipolytica and L. starkeyi) were cultured to produce single cell oil. Rice bran was used since it is one of the major-agricultural byproduct, especially in Asia. Dilute sulfuric acid was employed to hydrolyze rice bran into fermentable sugars. A few detoxification methods were tested for removing inhibitors that could inhibit biomass growth during fermentation. Fermentations were carried out by varying conditions and fermentation modes (1 stage and 2 stages) in order to find the best lipid content or lipid productivity. The highest biomass and lipid content obtained by using Y. lipolytica was 14.3 g/L and 10%, respectively. While those values for L. starkeyi, was 26.2 g/L and 60.35% by glucose addition to RBH, and 19.8 g/L and 65.55% by re-suspension in glucose solution. The fatty acids profiles of the single cell oils produced are similar to those of vegetable oils, with the majority being oleic and palmitic acids, thus it has potential as raw material for biodiesel production. Furthermore, dried rice bran residue after dilute acid hydrolysis can be used as both feedstock and acid catalyst for biodiesel production. RB residue was found to have > 1 mmol acid sites/g dry residue. In the in situ transesterification of 2% or 3% RB residue in a SCW reactor, 87-89% FAME yield and 94-98% conversion were obtained without any addition of gas in short reaction time. This study shows the potential of utilizing lignocellulosic biomass to produce more valuable product.

TABLE OF CONTENTS Recommendation Letterii Qualification Formiii 摘要 iv Acknowledgementv Table of Contentsvi List of Figuresx List of Tablesxii CHAPTER I Introduction1 1.1Background1 1.2Objectives4 1.3General framework of studies5 1.4Scope and limitation5 CHAPTER II Review of Related Literatures6 2.1Rice bran6 2.2Hydrolysis method7 2.3Oleaginous microorganisms9 2.3.1Yarrowia lipolytica9 2.3.2Lipomyces starkeyi12 2.3.2.1Feedstock assimilation and sugar uptake16 2.4Media types and fermentation modes24 2.5Cells pre-treatment and lipid extraction26 2.6Strategy for increasing lipid accumulation29 2.7Fatty acids analysis29 2.8In situ transesterification of rice bran oil31 CHAPTER III Materials and Methods33 3.1Materials and chemicals33 3.2Methodology of experiment34 3.2.1Preliminary RB hydrolysis using SCW reactor35 3.2.2Dilute acid hydrolysis of RB37 3.2.3Detoxification and neutralization37 3.2.4Sterilization of RBH39 3.2.5Determination of total sugar (TS) and total reducing sugar (TRS) 39 3.2.6Protein analysis40 3.2.7Basal medium and inoculum preparation40 3.2.8Fermentation41 3.2.9Lipid content and FFA content of biomass (dried cells)42 3.2.10Fatty acid profiling43 3.2.11In situ biodiesel production44 3.2.12Gas chromatograph analysis46 3.2.13Acid strength determination47 CHAPTER IV Results and Discussion48 4.1Rice bran hydrolysis for Y. lipolytica fermentation 48 4.1.1Characteristic of rice bran (RB batch A) 48 4.1.2Dilute acid hydrolysis of rice bran49 4.1.3Yarrowia lipolytica Po1g fermentation in RBH medium54 4.1.4Fermentation in YPD medium 62 4.1.5Fatty acids profile of Y. lipolytica lipids69 4.1.6Recovery of lipids70 4.1.7Recovery of bioactive compounds71 4.2Application of improved-hydrolysis of rice bran for Lipomyces starkeyi fermentation73 4.2.1Characteristic of rice bran and the hydrolysate (RBH) 73 4.2.2Fermentation in YPD medium73 4.2.3Fermentation in process-improved-rice bran hydrolysate83 4.2.4Fatty acids (FAs) profile of L. starkeyi lipid101 4.3In situ biodiesel production103 CHAPTER V Conclusion107 5.1Conventional acid hydrolysis (3% H2SO4) for Y. lipolytica nutrient107 5.2Improved-hydrolysis method (2% H2SO4) for L. starkeyi fermentation107 5.3In situ biodiesel production108 5.3Summary of the present study108 References110 Appendix129

REFERENCES

1.Anonym, Crude Oil Price History Chart, 2016 04.02.16]; Available from: http://www.macrotrends.net/1369/crude-oil-price-history-chart.
2.Anonym, Global Petroleum and Other Liquids, 2016 06.02.16]; Available from: https://www.eia.gov/forecasts/steo/report/global_oil.cfm.
3. BP Energy Outlook 2016 Edition, 2016.
4.J.-L. Wertz and O. Bedue, Lignocellulosic Biorefineries, CRC Press, 2013.
5.World Crude Oil Production and Consumption by Year, 2016 [cited 2016 December 29]; Available from: http://www.indexmundi.com/energy/?product=oil&graph=production+consumption.
6.A. Tanimura, M. Takashima, T. Sugita, R. Endoh, M. Kikukawa, S. Yamaguchi, E. Sakuradani, J. Ogawa, M. Ohkuma, and J. Shima, Cryptococcus terricola is a promising oleaginous yeast for biodiesel production from starch through consolidated bioprocessing, Scientific Reports, 4 (2014) 4776.
7.A. Steinbüchel and B. Füchtenbusch, Bacterial and other biological systems for polyester production, Trends in Biotechnology, 16(10) (1998) 419-427.
8.X. Meng, J. Yang, X. Xu, L. Zhang, Q. Nie, and M. Xian, Biodiesel production from oleaginous microorganisms, Renewable Energy, 34(1) (2009) 1-5.
9.H.-D. Jang, Y.-Y. Lin, and S.-S. Yang, Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina, Bioresource Technology, 96(15) (2005) 1633-1644.
10.A. Tanimura, M. Takashima, T. Sugita, R. Endoh, M. Kikukawa, S. Yamaguchi, E. Sakuradani, J. Ogawa, M. Ohkuma, and J. Shima, Cryptococcus terricola is a promising oleaginous yeast for biodiesel production from starch through consolidated bioprocessing, Scientific Reports, 4 (2014) 4776.
11.C. Ratledge and Z. Cohen, Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?, Lipid Technology, 20(7) (2008) 155-160.
12.M. Jin, P.J. Slininger, B.S. Dien, S. Waghmode, B.R. Moser, A. Orjuela, L.d.C. Sousa, and V. Balan, Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges, Trends in Biotechnology, 33(1) (2015) 43-52.
13.Rice Production, 2016 [cited 2016 December 29]; Available from: www.foodsecurityportal.org/api/countriesfao-production-rice.
14.IRRI, World Rice Statistics Online Query Facility (1961-2015), accesed Febuary 25th, 2016.
15.GRiSP, Rice Almanac, in Source Book for One of the Most Important Economic Activities on Earth. 2013, International Rice Research Institute: Los Baños (Philippines).
16.T.S. Kahlon, Rice Bran: Production, Composition, Functionality and Food Applications, Physiological Benefits, in: Fiber Ingredients: Food Applications and Health Benefits SS and Samuel, Editors, CRC Press Taylor & Francis, 2009, pp 305-318.
17.S. Muthayya, J.D. Sugimoto, S. Montgomery, and G.F. Maberly, An overview of global rice production, supply, trade, and consumption, Annals of the New York Academy of Sciences, 1324 (2014) 7-14.
18.C.N. Economou, G. Aggelis, S. Pavlou, and D.V. Vayenas, Single cell oil production from rice hulls hydrolysate, Bioresource Technology, 102 (2011) 9737–9742.
19.K. Silpradit, S. Tadakittasarn, H. Rimkeeree, S. Winitchai, and V. Haruthaithanasan, Optimization of rice bran protein hydrolysate production using alcalase Asian Journal of Food and Agro-Industry, 3(02) (2010) 221-231.
20.S. Tang, N.S. Hettiarachchy, R. Horax, and S. Eswaranandam, Physicochemical Properties and Functionality of Rice Bran Protein Hydrolyzate Prepared from Heat-stabilized Defatted Rice Bran with the Aid of Enzymes, Journal of Food Science, 68(1) (2003) 152-157.
21.K. Bandyopadhyay, G. Misra, and S. Ghosh, Preparation and Characterisation of Protein Hydrolystaes from Indian Defatted Rice Bran Meal, Journal of Oleo Science, 57(1) (2008) 47-52.
22.Y. Wang, Z. Yang, P. Qin, and T. Tan, Fermentative L-(+)-lactic acid production from defatted rice bran, RSC Advances, 4 (2014) 8907-8913.
23.Z. Li, J. Lu, Z. Yang, L. Han, and T. Tan, Utilization of white rice bran for production of L-lactic acid, Biomass Bioenergy, 39 (2012) 53-58.
24.Y.A. Tsigie, C.-Y. Wang, C.-T. Truong, and Y.-H. Ju, Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate, Bioresource Technology, 102(19) (2011) 9216-9222.
25.Y.H. Oh, S.H. Lee, Y.-A. Jang, J.W. Choi, K.S. Hong, J.H. Yu, J. Shin, B.K. Song, S.G. Mastan, Y. David, M.G. Baylon, S.Y. Lee, and S.J. Park, Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution, Bioresource Technology, 181 (2015) 283-290.
26.T.-Y. Huang, K.-J. Duan, S.-Y. Huang, and C.W. Chen, Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei, Journal of Industrial Microbiology and Biotechnology, 33(8) (2006) 701-706.
27.N.K.N. Al-Shorgani, M.S. Kalil, and W.M.W. Yusoff, Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4, Bioprocess Biosystem Engineering, 35 (2012) 817–826.
28.J. Lee, E. Seo, D.-H. Kweon, K. Park, and Y.-S. Jin, Fermentation of Rice Bran and Defatted Rice Bran for Butanol Production Using Clostridium beijerinckii NCIMB 8052, Journal of Microbiology and Biotechnology, 19(5) (2009) 482-490.
29.M. Watanabe, M. Takahashi, K. Sasano, T. Kashiwamura, Y. Ozaki, T. Tsuiki, H. Hidaka, and S. Kanemoto, Bioethanol production from rice washing drainage and rice bran, Journal of Bioscience and Bioengineering, 108(6) (2009) 524–526.
30.T. Todhanakasem, K. Areerat, P. Thanonkeo, R. Klinjapoand, and G.M. Young, The Composition of Rice bran Hydrolysate and Its possibility to use in the Ethanol Production by Zymomonas Mobilis Biofilm, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 6(12) (2012) 1126-1130.
31.Z. Anwar, M. Gulfraz, and M. Irshad, Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review, Journal of Radiation Research and Applied Sciences, 7(2) (2014) 163-173.
32.S.H. Mood, A.H. Golfeshan, M. Tabatabaei, G.S. Jouzani, G.H. Najafi, M. Gholami, and M. Ardjmand, Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renewable Sustainable Energy Reviews, 27 (2013) 77-93.
33.V. Chaturvedi and P. Verma, An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products, 3 Biotech, 3(5) (2013) 415-431.
34.P.F.H. Harmsen, W.J.J. Huijgen, L.M.B. López, and R.R.C. Bakker, Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass 2010: Univeristy of Wageningen.
35.P. Kumar, D.M. Barrett, M.J. Delwiche, and P. Stroeve, Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Industrial and Engineering Chemistry Research 48(8) (2009) 3713–3729.
36.V. Menon and M. Rao, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Progress in Energy and Combustion Science, 38(4) (2012) 522-550.
37. A.K. Chandel, S.S.d. Silva, and O.V. Singh, Detoxification of Lignocellulosic Hydrolysates for Improved Bioethanol Production, Biofuel Production-Recent Developments and Prospects, 2011.
38.J.-M. Nicaud, Yarrowia lipolytica, Yeast, 29(10) (2012) 409-418.
39.M.A.Z. Coelho, P.F.F. Amaral, and I. Belo, Yarrowia lipolytica: an industrial workhorse, Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, (2010)
40.S. Papanikolaou, A. Chatzifragkou, S. Fakas, M. Galiotou-Panayotou, M. Komaitis, J.-M. Nicaud, and G. Aggelis, Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose, European Journal of Lipid Science and Technology, 111(12) (2009) 1221-1232.
41.S. Papanikolaou and G. Aggelis, Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture, Bioresource Technology, 82(1) (2002) 43-49.
42.P. Fontanille, V. Kumar, G. Christophe, R. Nouaille, and C. Larroche, Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica, Bioresource Technology, 114(0) (2012) 443-449.
43.Y.A. Tsigie, L.H. Huynh, I.N. Ahmed, and Y.-H. Ju, Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment, Bioresource Technology, 111(0) (2012) 201-207.
44.N. Bati, E.G. Hammond, and B.A. Glatz, Biomodification of fats and oils: Trials withCandida lipolytica, Journal of the American Oil Chemists’ Society, 61(11) (1984) 1743-1746.
45.X. Yu, Y. Zheng, K.M. Dorgan, and S. Chen, Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid, Bioresource Technology, 102(10) (2011) 6134-6140.
46.G. Aggelis and M. Komaitis, Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L aqueous extract, Bioresource Letters, 21 (1999) 747-749.
47.S. Papanikolau, M.G. Panayotou, I. Chevalot, M. Komaitis, I. Marc, and G. Aggelis, Influence of Glucose and Saturated Free Fatty Acid Mixtures on Citric Acid and Lipid Production by Yarrowia Lipolytica, Current Microbiology, 52 (2006) 134-142.
48.D. Montet, R. Ratomahenia, and P. Galzy, A study of the influence of the growth media on the fatty acid composition in Candida lipolytica Diddens and Lodder, Bioresource Letters, 7(10) (1985) 733-736.
49.M.N.C. Harder, A.S. Delabio, S. Cazassa, R.R. Remedio, J.A. Pires, T.R.R. Monteiro, and V. Arthur, Lipid production by Yarrowia lipolytica for biofuels, in Materials and process for energy. 2013.
50.S.E. Karatay and G. Dönmez, Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses, Bioresource Technology, 101 (2010) 7988–7990.
51.C.C. Hsu, Effects of different carbon sources on Yarrowia lipolytica P01g of growth rate and lipid productivity, MS Thesis. Unpublished Work Chemical Engineering: National Taiwan University of Science and Technology, Taipei, Taiwan (2014).
52.Z.Y. Hui, Effects of over-expressing LRO1 gene in Yarrowia Lipolytica P01g on enhancing its growth rate and lipid production, M.Sc Thesis: National Taiwan University of Science and Technology, Taipei, Taiwan (2015).
53.Y.A. Tsigie, C.Y. Wang, N.S. Kasim, Q.D. Diem, L.H. Huynh, Q.P. Ho, C.T. Truong, and Y.H. Ju, Oil Production from Yarrowia lipolytica P01g Using Rice Bran Hydrolysate, Journal of Biomedicine and Biotechnology, 2012 (2012)
54.J.S. Poli, P. Dalle, L. Senter, S. Mendes, M. Ramirez, M.H. Vainstein, and P. Valente, Fatty acid methyl esters produced by oleaginous yeast Yarrowia lipolytica QU21: an alternative for vegetable oils, Brazillian Journal of Biosciences, 11 (2013)
55.J.S. Poli, M.A.N.d. Silva, E.P. Siqueuira, V.M.D. Pasa, C.A. Rosa, and P. Valente, Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production, Bioresource Technology, 161 (2014) 320-326.
56.S. Bellou, A. Makri, I.E. Triantaphyllidou, S. Papanikolau, and G. Aggelis, Morphological and metabolic shifts of yarrowia lopolytica induced by alteration of the dissolved oxygen concentration in the growth environment, Microbiology, 160 (2014) 807-817.
57.B. Cheirsilp and Y. Louhasakul, Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel, Bioresource Technology, 142 (2013) 329-337.
58.P. Juszczyk, L. Tomaszewska, A. Kita, and W. Rymowicz, Biomass production by novel strains of Yarrowia lipolytica using raw glycerol derived from biodiesel production, Bioresource Technology, 137 (2013) 124-131.
59.I.R. Sitepu, R. Sestric, L. Ignatia, D. Levin, J.B. German, L.A. Gillies, L.A.G. Almada, and K.L.B. Mills, Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast sepcies, Bioresource Technology, 144 (2013) 360-369.
60.S. Papanikolaou, A. Beopoulos, A. Koletti, F. Thevenieau, A.A. Koutinas, J.-M. Nicaud, and G. Aggelis, Importance of the methyl-citrate cycle on glycerol metabolism in theyeast Yarrowia lipolytica, 168 (2013) 303-314.
61.A. Makri, S. Fakas, and G. Aggelis, Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures, Bioresource Technology, 101(7) (2010) 2351–2358.
62.J. Blazeck, A. Hill, L. Liu, R. Knight, J. Miller, A. Pan, P. Otoupal, and H.S. Alper, Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production, Nature Communications 5(2014)
63.G. Katre, C. Joshi, M. Khot, S. Zinjarde, and A.R. Kumar, Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel, AMB Express, 2(36) (2012) 1-11.
64.M. Rakicka, Z. Lazar, T. Dulermo, P. Fickers, and J.M. Nicaud, Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by‑products under different culture conditions, Biotechnology for Biofuels, 8(104) (2015) 1-10.
65.M. Enshaeieh, A. Abdoli, I. Nahvi, and M. Madani, Bioconversion of different carbon sources in to microbial oil and biodiesel using oleaginous yeasts, Journal of Biology and today's world, 1(2) (2012) 82-92.
66.J. Sil, S. Das, R. G.Oliveira, P. F.F.Amaral, and M.A. Z.Coelho, Screening Six Potential Yarrowia Lipolytica Strains for Best Lipid, Citric Acid, Biosurfactant and Lipase Production, in 2013 2nd International Conference on Environment, Energy and Biotechnology, 2013.
67.M. Tai and G. Stephanopoulos, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production, Metabolic Engineering, 15 (2013) 1-9.
68.C.S. Database, CBS 1807, accesed Febuary 10th, 2016.
69.G.B.I. Facility, Lipomyces starkeyi Lodder & Kreger-van Rij, 1952. Copenhagen, Denmark.
70.M.T. Smith and C.P. Kurtzman, Chapter 43: Lipomyces Lodder & Kreger van Rij (1952), in: The Yeasts: A Taxonomic Study Fifth Edition. Kurtzman, Fell, and Boekhout, Editors, Elsevier, United States of America, 2011, pp 545-560.
71.C. Kurtzman and J.W. Fell, The Yeasts - A Taxonomic Study, Elsevier Science, 1998.
72.Y. Uzuka, T. Naganuma, K. Tanaka, and K. Suzuki, Relation between neutral lipid accumulation and the growth phase in the yeast, Lipomyces starkeyi, a fat producing yeast, Agricultural Biological Chemistry, 49(3) (1985) 851-852.
73.M. Suutari, P. Priha, and S. Laakso, Temperature shifts in regulation of lipids accumulated by Lipomyces starkeyi, Journal of American Oil Chemists' Society, 70(9) (1993) 891-894.
74.Y. Uzuka, T. Naganuma, K. Tanaka, and Y. Odagiri, Effect of culture on the growth and biotin requirement in a strain of Lipomyces starkeyi, The Journal of General and Applied Microbiology, 20 (1974) 197-206.
75.G.M. Walker, Yeast Physiology and Biotechnology, John Wiley & Sons, England, 1998.
76.T. Naganuma, Y. Uzuka, and K. Tanaka, Physiological factors affecting total cell number and lipid content of the yeast, Lipomyces starkeyi, The Journal of General and Applied Microbiology, 31 (1985) 29-37.
77.T. Naganuma, Y. Uzuka, and K. Tanaka, Using Inorganic Elements to Control Cell Growth and Lipid Accumulation, The Journal of General and Applied Microbiology, 32 (1986) 417-424.
78.P. Akhtar, J.I. Gray, and A. Asghar, Synthesis of lipids by certain yeast strains grown on whey permeate, Journal of Food Lipids, 5 (1998) 283-297.
79.K. Nishimura, M. Yamamoto, T. Nakagomi, Y. Takiguchi, T. Naganuma, and Y. Uzuka, Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil yeast Lipomyces starkeyi, Applied Microbiology Biotechnology, 58 (2002) 848–852.
80.J.R. Anderson and E.A. Drew, Growth Characteristic of a Species of Lipomyces and its Degradation of Paraquat, Journal of General Microbiology, 70 (1972) 43-58.
81.T. Suzuki and K. Hazegawa, Lipid composition and lipid molecular species of Lipomyces starkeyi cultivated in medium containing 1,2-propanediol, Agricultural and Biological Chemistry, 40(1) (1975) 221-223.
82.H. Liu, X. Zhao, F. Wang, X. Jiang, S. Zhang, M. Ye, Z.K. Zhao, and H. Zou, The proteome analysis of oleaginous yeast Lipomyces starkeyi, FEMS Yeast Research, 11 (2011) 42-51.
83.M.H. Deinema and C.A. Landheer, Composition of Fats, produced by Lipomyces starkeyi, under various conditions, Archiv fur Mikrobiologie, 25 (1956) 193-200.
84.H. Yamauchi, M. H, K. T, and S. S, Mass production of lipids by Lipomyces starkeyi in microcomputer-aided-fed-batch culture, Journal of Fermentation Technology, 61 (1983) 275-280.
85.V.K. Eroshin and N.I. Krylova, Efficiency of lipid synthesis by yeasts, Biotechnology and Bioengineering, 25(7) (1983) 1693-1700.
86.C. Angerbauer, M. Siebenhofer, M. Mittelbach, and G.M. Guebitz, Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production, Bioresource Technology, 99(8) (2008) 3051-3056.
87.X. Zhao, X. Kong, Y. Hua, B. Feng, and Z.K. Zhao, Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi, European Journal of Lipid Science and Technology, 110 (2008) 405–412.
88.X. Chen, Z. Li, X. Zhang, F. Hu, D.D.Y. Ryu, and J. Bao, Screening of Oleaginous Yeast Strains Tolerant to Lignocellulose Degradation Compounds, Applied Biochemistry and Biotechnology, 159 (2009) 591–604.
89.A. Yousuf, F. Sannino, V. Addorisio, and D. Pirozzi, Microbial Conversion of Olive Oil Mill Wastewaters into Lipids Suitable for Biodiesel Production, Journal of Agricultural and Food Chemistry, 58(15) (2010) 8630-8635.
90.R. Wild, S. Patil, M. Popovi, M. Zappi, S. Dufreche, and R. Bajpai, Lipids from Lipomyces starkeyi, Food Technology and Biotechnology, 48(3) (2010) 329–335.
91.J. Lin, H. Shen, H. Tan, X. Zhao, S. Wu, C. Hu, and Z.K. Zhao, Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients, Journal of Biotechnology, 152(4) (2011) 184-188.
92.L. Huang, B. Zhang, G. B, and S. G, Application of fishmeal wastewater as a potential low-cost medium for lipid production by Lipomyces starkeyi HL., Environmental Technology, 33(15-16) (2011) 1975-1981.
93.N.E.-A.A. El-Naggar, M.S. El-Hersh, H.A. El-Fadaly, and W.I.A. Saber, Bioconversion of some agro-industrial by products into single cell oil using candida albicans NRL Y-12983 and Lipomyces starkeyi NRRL Y-11557, Research Journal of Microbiology, 6(11) (2011) 784-795.
94.E. Oguri, K. Masaki, T. Naganuma, and H. Iefuji, Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi, Antonie van Leeuwenhoek, 101 (2012) 359–368.
95.J.-X. Liu, Q.-Y. Yue, B.-Y. Gao, Z.-H. Ma, and P.-D. Zhang, Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipid, Bioresource Technology, 106(0) (2012) 69-73.
96.Z. Gong, Q. Wang, H. Shen, C. Hu, G. Jin, and Z.K. Zhao, Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production, Bioresource Technology, 117(0) (2012) 20-24.
97.R.F. Castanha, L.A.S.d. Morais, A.P. Mariano, and R.T.R. Monteiro, Comparison of Two Lipid Extraction Methods Produced by Yeast in Cheese Whey, Brazilian Archives of Biology and Technology 56(4) (2013) 629-636.
98.J.-X. Liu, Q.-Y. Yue, B.-Y. Gao, Y. Wang, Q. Li, and P.-D. Zhang, Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi, Water Science and Technology, 67(8) (2013) 1802-1808.
99.I.R. Sitepu, R. Sestric, L. Ignatia, D. Levin, J.B. German, L.A. Gillies, L.A.G. Almada, and K.L. Boundy-Mills, Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species, Bioresource Technology, 144 (2013) 360-369.
100.A.K. Azad, A. Yousuf, A. Ferdoush, M.M. Hasan, M.R. Karim, and A. Jahan, Production of Microbial Lipids from Rice Straw Hydrolysates by Lipomyces starkeyi for Biodiesel Synthesis, Microbial Biochemical Technology, (2014) 1-6.
101.K.V. Probst, Single cell oil production using lipomyces starkeyi: fermentation, lipid analysis and use of renewable hemicellulose-rich feedstocks: Kansas State University, Manhattan, Kansas (2014).
102.X. Yang, G. Jin, Z. Gong, H. Shen, Y. Song, F. Bai, and Z.K. Zhao, Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi, Bioresource Technology, 158(0) (2014) 383-387.
103.L. Matsakas, A.-A. Sterioti, U. Rova, and P. Christakopoulos, Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807, Industrial Crops and Products, 62(0) (2014) 367-372.
104.C. Huang, X.-F. Chen, X.-Y. Yang, L. Xiong, X.-Q. Lin, J. Yang, B. Wang, and X.-D. Chen, Bioconversion of Corncob Acid Hydrolysate into Microbial Oil by the Oleaginous Yeast Lipomyces starkeyi, Applied Biochemistry Biotechnology, 172 (2014) 2197–2204.
105.R. Wang, J. Wang, R. Xu, Z. Fang, and A. Liu, Oil production by the oleaginous yeast Lipomyces starkeyi using diverse carbon sources, Bioresources, 9(4) (2014) 7027-7040.
106.S. Tsakona, N. Kopsahelis, A. Chatzifragkou, S. Papanikolaou, I.K. Kookos, and A.A. Koutinas, Formulation of fermentation media from flour-rich waste streams formicrobial lipid production by Lipomyces starkeyi, Journal of Biotechnology, 189 (2014) 36-45.
107.A. Anschau, M.C.A. Xavier, S. Hernalsteens, and T.T. Franco, Effect of feeding strategies on lipid production by Lipomyces starkeyi, Bioresource Technology, 157(0) (2014) 214-222.
108.J.P.F. Vieira, J.L. Ienczak, C.E.V. Rossell, J.G.C. Pradella, and T.T. Franco, Microbial lipid production: screening with yeasts grown on Brazilian molasses, Biotechnology Letters, 36 (2014) 2433–2442.
109.M.C.A. Xavier and T.T. Franco, Batch and Continuous Culture of Hemicellulosic Hydrolysate from Sugarcane Bagasse for Lipids Production, Chemical Engineering Transactions, 38 (2014) 385-390.
110.D. Pirozzi, G. Travglini, D. Sagneli, F. Sannino, and G. Toscano, Study of a Discontinuous Fed-Batch Fermentor for the Exploitation of Agricultural Biomasses to Produce II-Generation Biodiesel, Chemical Engineering Transactions, 38 (2014) 169-174.
111.D. Pirozzi, A. Ausiello, A. Yousuf, G. Zuccaro, and G. Toscano, Exploitation of Oleaginous Yeasts for the Production of Microbial Oils from Agricultural Biomass, Chemical Engineering Transactions, 37 (2014) 469-474.
112.A. Anschau and T.T. Franco, Cell mass energetic yields of fed-batch culture by Lipomyces starkeyi, Bioprocess Biosystem Engineering, (2015)
113.F. Spier, J.G. Buffon, and C.A.V. Burkert, Bioconversion of raw Glycerol Generated from the Synthesis of Biodiesel by Different Oleaginous Yeast: Lipid Content and Fatty Acid profile of Biomass, Indian Journal of Microbiology, (2015)
114.K.V. Probst and P.V. Vadlani, Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-prodcuts, Bioresource Technology, 198 (2015) 268-275.
115.C.H. Calvey, Y.-K. Su, L.B. Willis, M. McGee, and T.W. Jeffries, Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi, Bioresource Technology, 200 (2016) 780-788.
116.D.E. Leiva-Candia, S. Tsakona, N. Kopsahelis, I.L. Garcia, S. Papanikolau, M.P. Dorado, and A.A. Koutinas, Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value added co-products, Bioresource Technology, 190 (2015) 57-65.
117.N. Bonturi, L. Matsakas, R. Nilson, P. Christakopoulos, E.A. Miranda, K.A. Berglund, and U. Rova, Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides: Selection of extraction strategies and biodiesel property prediction, Energies, 8 (2015) 5040-5052.
118.S.S. Tchakouteu, O. Kalantzi, C. Gardeli, A.A. Koutinas, G. Aggelis, and S. Papanikolaou, Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency, Journal of Applied Microbiology, 118 (2015) 911-927.
119.A. Anschau and T.T. Franco, Continuous Cultivations of the Oleaginous Yeast Lipomyces starkeyi, in V Simposio de Bioquimica E Biotecnologia, Londrina, Brazil, 2015.
120.B.S. Dien, P.J. Slininger, C.P. Kurtzman, B.R. Moser, and P.J. O’Bryan, Identification of superior lipid producing Lipomyces and Myxozyma yeasts, AIMS Environmental Science, 3(1) (2016) 1-20.
121.X. Yang, G. Jin, Y. Wang, H. Shen, and Z.K. Zhao, Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions, Bioresource Technology, 193 (2015) 557-562.
122.I.R. Sitepu, L.A. Garay, R. Sestric, D. Levin, D.E. Block, J.B. German, and K.L. Boundy-Mills, Oleaginous yeasts for biodiesel: Current and future trends in biology and production, Biotechnology Advances, 32(7) (2014) 1336-1360.
123.A.W. Go, S. Sutanto, L.K. Ong, P.L. Tran-Nguyen, S. Ismadji, and Y.-H. Ju, Developments in in-situ (trans) esterification for biodiesel production: A critical review, Renewable and Sustainable Energy Reviews, 60 (2016) 284-305.
124.C.A. Boulton and C. Ratledge, Use of Transition Studies in Continuous Cultures of Lipomyces starkeyi, an oleaginous yeast, to Investigate the Physiology of Lipid Accumulation, Journal of General Microbiology, (1983) 2871-2876.
125.Y. Uzuka, T. Kanamori, T. Koga, K. Tanaka, and T. Naganuma, Isolation and chemical composition of intracellular oil globules from the yeast lipomyces starkeyi, The Journal of General and Applied Microbiology, 21 (1975) 157-168.
126.T. Naganuma, Y. Uzuka, and K. Tanaka, Quantitative Estimation of Intracellular Neutral Lipids of the Yeast, Lipomyces starkeyi, Agricultural and Biological Chemistry, 46(5) (1982) 1213-1217.
127.T. Suzuki, A. Takigawa, and K. Hasegawa, Lipid Extraction Methods for Lipomyces starkeyi, Agricultural and Biological Chemistry, 37(11) (1973) 2653-2656.
128.T. Suzuki and K. Hasegawa, Lipid Molecular Species of Lipomyces starkeyi, Agricultural and Biological Chemistry, 38 (1974) 1371-1376.
129.C. Wang, L. Chen, B. Rakesh, Y. Qin, and R. Lv, Technologies for extracting lipids from oleaginous microorganisms for biodiesel production, Frontiers in Energy, 6(3) (2012) 266-274.
130.B.Z. Hong and S.M. Ren, Preliminary measurement of drying property for two-phase extracted rapeseed meal and cottenseed meal, China Oils and Fats, 24(3) (1999) 57-59.
131.K.V. Probst and P.V. Vadlani, Production of singel cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-prodcuts, Bioresource Technology, 198 (2015) 268-275.
132.E.G. Bligh and W.J. Dryer, A rapid method of total lipid extraction and purification, Canadian Journal of Biochemistry and Physiology, 37(8) (1959)
133.C. Ratledge, The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems, Biotechnology Letters, 36(8) (2014) 1557-1568.
134.C. Shene, A. Leyton, Y. Esparza, L. Flores, B. Quilodrán, I. Hinzpetera, and M. Rubilar, Microbial oils and fatty acids: Effect of carbon source on docosahexanoic acid (C22:6 n-3, DHA) production by Thraustochytrid strains Journal of Soil Science and Plant Nutrition, 10(3) (2010) 207-216.
135.I. Espinosa-Gonzalez, A. Parashar, and D.C. Bressler, Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production, Journal of Biotechnology, 187 (2014) 10-15.
136.P. Thliveros, E.U. Kiran, and C. Webb, Microbial biodiesel production by direct methanolysis of oleaginous biomass, Bioresource Technology, 157 (2014) 181-187.
137.P.-J. Shiu, S. Gunawan, W.-H. Hsieh, N.S. Kasim, and Y.-H. Ju, Biodiesel production from rice bran by a two-step in-situ process, Bioresource Technology, 101(3) (2010) 984-989.
138.S. Özgül-Yücel and S. Türkay, Variables Affecting the Yields of Methyl Esters Derived from in situ Esterification of Rice Bran Oil, Journal of American Oil Chemists' Society, 79 (2002) 611–614.
139.L. Yustianingsih, S. Zullaikah, and Y.H. Ju, Ultrasound-assisted in-situ production of biodiesel from rice bran, Journal of Energy Institute, 82(3) (2009) 133-137.
140.N.S. Kasim, T.-H. Tsai, S. Gunawan, and Y.-H. Ju, Biodiesel production from rice bran oil and supercritical methanol, Bioresource Technology, 100(8) (2009) 2399–2403.
141.A.W. Go, Biodiesel production under subcritical conditions using solvent mixtures of methanol, water and acetic acid, PhD Thesis. National Taiwan University of Science and Technology, Taipei, Taiwan (2015).
142.A.W. Go, S. Sutanto, Y.-T. Liu, P.L.T. Nguyen, S. Ismadji, and Y.-H. Ju, In situ transesterification of Jatropha curcas L. seeds in subcritical solvent system, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 1516–1522.
143.A.W. Go, S. Sutanto, S. Zullaikah, S. Ismadji, and Y.-H. Ju, A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production – Technological improvement, Renewable Energy, 85 (2016) 759-765.
144.S. Sutanto, A.W. Go, S. Ismadji, and Yi-Hsu Ju, Taguchi Method and Grey Relational Analysis to Improve in Situ Production of FAME from Sunflower and Jatropha curcas Kernels with Subcritical Solvent Mixture, Journal of the American Oil Chemists' Society, 92(10) (2015) 1513-1523.
145.A.W. Go, S. Sutanto, P.L. Tran-Nguyen, S. Ismadji, S. Gunawan, and Y.-H. Ju, Biodiesel production under subcritical solvent condition using subcritical water treated whole Jatropha curcas seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica, Fuel, 120 (2014) 46-52.
146.A.W. Go, Y.T. Liu, and J.Y. Hsu, Applicability of Subcritical Water Treatment on Oil Seeds to Enhance Extractable Lipid, Bioenergy Research, (2013) 1-9.
147.P.L. Tran-Nguyen, A.W. Go, S. Ismadji, and Y.-H. Ju, Transesterification of activated sludge in subcritical solvent mixture, Bioresource Technology, (2015) 30-36.
148.C.K. Hung, Effect of the co-culture on the biomass and lipid content using rice bran hydrolysate as nutrition, MS Thesis. National Taiwan University of Science and Technology, Taipei, Taiwan (2016).
149.D. M, G. KA, H. JK, R. P, and S. F, Colorimetric method for determination of sugars and related substances., Analytical Chemistry, 28(3) (1956) 350-356.
150.G.L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Analytical Chemistry, 31(3) (1959) 426–428.
151.Official Methods and Recommended Practices of the American Oil Chemists' Society, Firestone, Editor. 1989, The Society.
152. U.S.E.P. Agency, Synthesis and characterization of a novel solid acid catalyst for improved use of waste oil feedstock for biodiesel production 2010.
153.A. Verardi, I.D. Bari, E. Ricca, and V. Calabrò, Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives., Lima, Editor. 2012, InTech Open.
154.C. Fabian, A. Ayucitra, S. Ismadji, and Y.-H. Ju, Isolation and characterization of starch from defatted rice bran, Journal of the Taiwan Institute of Chemical Engineers, 42(1) (2011) 86-91.
155.T. Tanaka, M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi, Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation, Bioresource Technology, 97 (2006) 211–217.
156.A.W. Go, A.T. Conag, and D.E.S. Cuizon, Recovery of Sugars and Lipids from Spent Coffee Grounds: A New Approach, Waste Biomass Valorization, (2016) 1-7.
157.Y.A. Tsigie, C.-Y. Wang, N.S. Kasim, Q.-D. Diem, L.-H. Huynh, Q.-P. Ho, C.-T. Truong, and Y.-H. Ju, Oil Production from Yarrowia lipolytica PO1g Using Rice Bran Hydrolysate, Journal of Biomedicine and Biotechnology, 10 (2012) 1-10.
158.T. Todhanakasem, A. Sangsutthiseree, K. Areerat, G.M. Young, and P. Thanonkeo, Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate, New Biotechnology, 31(5) (2014) 451-459.
159.Z. Li, L. Deng, J. Lu, X. Guo, Z. Yang, and T. Tan, Enzymatic Synthesis of Fatty Acid Methyl Esters from Crude Rice Bran Oil with Immobilized Candida sp. 99–125, Chinese Jornal of Chemical Engineering, 18(5) (2010) 870-875.
160.E.A. Smith, Fractionation and Characterisation of a commercial yeast extract to facilitate acceleration of yogurt fermentation: University of the Free State, South Africa (2013).
161.T. Scientific,Laboratory Preparations/Biological Extracts, 2016.
162.J.-M. Nicaud, C. Madzak, P.v.d. Broek, C. Gysler, P. Duboc, P. Niederberger, and C. Gaillardin, Protein expression and secretion in the yeast Yarrowia lipolytica, FEMS Yeast Research, 2 (2002) 371-379.
163.J. Blazeck, A. Hill, L. Liu, R. Knight, J. Miller, A. PN, P. Otoupal, and H.S. Alper, Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production, Nature Communications, 5(3131) (2014) 1-10.
164.S. Papanikolaou, S. Fakas, M. Fick, I. Chevalot, M. Galiotou-Panayotou, M. Komaitis, I. Marc, and G. Aggelis, Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil, Biomass and Bioenergy, 32(1) (2008) 60-71.
165.J.S. Poli, M.A.N. da Silva, E.P. Siqueira, V.M.D. Pasa, C.A. Rosa, and P. Valente, Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production, Bioresource Technology, 161 (2014) 320-326.
166.T. Dulermo and J.-M. Nicaud, Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica, Metabolic Engineering, 13(5) (2011) 482-491.
167.C. Ratledge and J. Wynn, The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms, Advanced Applied Microbiology, 51 (2002)
168.S. Papanikolaou, I. Chevalot, M. Galiotou-Panayotou, M. Komaitis, I. Marc, and G. Aggelis, Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica, Electronic Journal of Biotechnology, 10(3) (2007) 425-435.
169.A. Beopoulos, J. Cescut, R. Haddouche, J.-L. Uribelarrea, C. Molina-Jouve, and J.-M. Nicaud, Yarrowia lipolytica as a model for bio-oil production, Progress in Lipid Research, 48(6) (2009) 375-387.
170.N.M. Esa, T.B. Ling, and L.S. Peng, By-products of Rice Processing: An Overview of Health Benefits and Applications, Journal of Rice Research, 1(1) (2013) 1-11.
171.E.P. Ryan, Bioactive food components and health properties of rice bran, JAVMA, 238(5) (2011) -.
172.P. Mercer and R.E. Armenta, Developments in oil extraction from microalgae, European Journal of Lipid Science and Technology, 113(5) (2011) 539-547.
173.X. Yu, T. Dong, Y. Zheng, C. Miao, and S. Chen, Investigations on cell disruption of oleaginous microorganisms: Hydrochloric acid digestion is an effective method for lipid extraction, European Journal of Lipid Science and Technology, 117(5) (2015) 730-737.
174.T. Dong, E.P. Knoshaug, P.T. Pienkos, and L.M.L. Laurens, Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review, Applied Energy, 177 (2016) 879-895.
175.L.Y. Zhu, M.H. Zong, and H. Wu, Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation, Bioresource Technology, 99(16) (2008) 7881-7885.
176.Y. Li, Z. Zhao, and F. Bai, High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture, Enzyme and Microbial Technology, 41(3) (2007) 312-317.
177.J.E. Holdsworth, M. Veenhuis, and C. Ratledge, Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids, Journal of General Microbiology, 134 (1988) 2907-2915.
178.J. Lin, S. Li, M. Sun, C. Zhang, W. Yang, Z. Zhang, X. Lia, and S. Li, Microbial lipid production by oleaginous yeast in D-xylose solution using a two-stage culture mode, RSC Advances, 4 (2014) 34944–34949.
179.Q. Sha, A comparative study on four oleaginous yeasts on their lipid accumulating capacity: Swedish University of Agricultural Sciences, Uppsala, Sweden (2013).
180.S. Papanikolaou and G. Aggelis, Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production, European Journal of Lipid Science and Technology, 113 (2011) 1031-1051.
181.Advances in Carbohydrate Chemistry, ed. Wolfrom and Tipson, Vol, 23, Academic Press Inc., Ltd., United States of America, 1968.
182.X. Yang, G. Jin, Z. Gong, H. Shen, F. Bai, and Z.K. Zhao, Recycling microbial lipid production wastes to cultivate oleaginous yeasts, Bioresource Technology, 175 (2015) 91-96.
183.P.A. Russo, M.M. Antunes, P. Neves, P.V. Wiper, E. Fazio, F. Neri, F. Barreca, L. Mafra, M. Pillinger, N. Pinna, and A.A. Valente, Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion, Journal of Materials Chemistry A, 2 (2014) 11813–11824.
184.W.-J. Liu, K. Tian, H. Jiang, and H.-Q. Yu, Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste, Scientific Reports, 3( 2419) (2013) 1-7.
185.S. Zullaikah and Y.T. Rahkadima, In-situ Biodiesel and Sugar Production from Rice Bran under Subcritical Condition, in International Conference of Chemical and Material Engineering, American Institute of Physics, 2015.

QR CODE