簡易檢索 / 詳目顯示

研究生: Doan Minh Tam
Doan Minh Tam
論文名稱: 動態土壤-基礎互制系統承受水平與翻轉振動之通用集中參數分析模式
Development of generic lumped-parameter models for dynamic soil-foundation interaction systems undergoing lateral and rocking vibrations
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 李安叡
An-Jui Li
施俊揚
Jun-Yang Shi
陳希舜
Shi-Shuenn Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 196
外文關鍵詞: Soil-pile-structure interaction, Forced excitations, Seismic motions
相關次數: 點閱:538下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • ABSTRACT i ACKNOWLEDGEMENT iii TABLE OF CONTENTS v LIST OF TABLES ix LIST OF FIGURES xi LIST OF NOTATIONS xix CHAPTER 1 INTRODUCTION 1 1.1 Research background 1 1.2 Objective and Organization 2 CHAPTER 2 LITERATURE REVIEW 5 2.1 Soil-footing foundation systems 5 2.2 Soil-pile foundation systems 7 2.3 Curve-fitting technique in Soil-Structure Interaction (SSI) 8 2.4 Meta-heuristic optimization algorithms 9 2.4.1 Genetic Algorithm (GA) 10 2.4.2 Forensic-based investigation (FBI) algorithm 11 2.4.3 Jellyfish search (JS) algorithm 12 CHAPTER 3 A PARAMETRIC STUDY FOR RIGID FOUNDATIONS UNDERGOING COUPLED LATERAL-ROCKING MOTIONS 13 3.1 Soil-footing foundation systems 13 3.2 Soil-pile foundation systems 17 3.3 Concluding remarks 20 CHAPTER 4 MODEL DEVELOPMENT FOR SOIL-FOOTING FOUNDATION SYSTEMS UNDERGOING COUPLED LATERAL-ROCKING MOTIONS 21 4.1 Calibration of discrete elements 21 4.1.1 Calibration of horizontal units 22 4.1.2 Discussion on calibrated horizontal module 25 4.1.3 Calibration of rotational units 27 4.1.4 Discussion on calibrated rotational module 31 4.2 A generic lumped-parameter model for soil-footing foundation (SFF) systems 32 4.3 Frequency-response functions of simplified soil-footing foundation (SFF) systems 35 4.4 Response of the simplified soil-footing foundation (SFF) systems subjected to ground motions 36 4.5 Optimization in simplified analysis of soil-footing foundation (SFF) systems 37 4.5.1 Sequential Quadratic Programming (SQP) 37 4.5.2 Genetic Algorithm (GA) 38 4.5.3 Forensic-based Investigation (FBI) algorithm 41 4.6 Conceptual framework of the optimized LP model 44 4.6.1 Components of constrained optimization models 45 4.6.2 Performance of constrained optimization models 47 4.6.3 Identification of a specific layout of the proposed LP model 48 4.7 Application and verification of a lumped-parameter model for rigid shallow foundations 50 4.7.1 Model application for a rigid foundation in/on a layered half-space in frequency domain 51 4.7.2 Model application for a rigid foundation in/on a uniform layer on rigid bedrock in frequency domain 67 4.8 Model comparison with other existing models 80 4.8.1 Comparison with Wolf and Somaini model (1986) for rigid foundations embedded into a layer on bedrock 81 4.8.2 Comparison with Wolf and Paronesso model (1992) for rigid foundations in a uniform layer on a rigid base 86 4.9 Model application for rigid shallow foundations in time domain 90 4.9.1 Rigid foundations in layered half-space 91 4.9.2 Rigid foundations in a uniform layer on a rigid base 97 4.10 Concluding remarks 104 CHAPTER 5 MODEL DEVELOPMENT FOR SOIL-PILE FOUNDATION SYSTEMS UNDERGOING COUPLED LATERAL-ROCKING MOTIONS 107 5.1 Calibration of discrete elements for a lumped-parameter model 107 5.1.1 Calibration of horizontal units 108 5.1.2 Discussion on the calibrated horizontal module 111 5.1.3 Calibration of rotational units 113 5.1.4 Discussion on calibrated rotational module 117 5.2 A generic lumped-parameter model for soil-pile foundation systems 119 5.3 Frequency-response functions of simplified soil-pile foundation systems 122 5.4 Response of the simplified soil-pile foundation systems subjected to ground motions 123 5.5 Single objective Jellyfish (SOJS) algorithm 124 5.6 Multiple objective Jellyfish (MOJS) algorithm 125 5.6.1 Pareto optimality concepts 127 5.6.2 Non-dominated selection 128 5.6.3 Elitist selection 128 5.6.4 An external archive 129 5.7 Conceptual framework for the optimal MOJS-based LP model 130 5.7.1 Components of the MOJS algorithm 131 5.7.2 Decision-making process for the optimal LP model 133 5.7.3 Specific layout of the optimal LP model 135 5.8 Verification of the proposed LP model in frequency domain 136 5.8.1 Frequency-domain response of single-pile foundations 139 5.8.2 Frequency-domain response of group-pile foundations 141 5.9 Verification of the proposed LP model in time domain 145 5.9.1 Time-history response of a single-pile foundation 152 5.9.2 Time-history response of a 2x2 group-pile foundation 154 5.10 Concluding remarks 158 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 161 6.1 Summary and conclusions 161 6.2 Recommendations for future research 163 REFERENCES 165

    [1] Aldimashki, M.M., Brownjohn, J.M.W., Bhattacharya, S., 2014. Experimental and Analytical Study of Seismic Soil-Pile-Structure Interaction in Layered Soil Half-Space. Journal of Earthquake Engineering. 18(5), 655-73. https://doi.org/10.1080/13632469.2014.899170.
    [2] Ancheta, T., Darragh, R., Stewart, J., Seyhan, E., Silva, W., Chiou, B., Wooddell, K., Graves, R., Kottke, A., Boore, D., Kishida, T., Donahue, J., 2014. NGA-West2 database. Earthquake Spectra. 30 https://doi.org/10.1193/070913EQS197M.
    [3] Andersen, L., 2010. Assessment of lumped-parameter models for rigid footings. Comput Struct. 88(23), 1333-47. https://doi.org/10.1016/j.compstruc.2008.10.007.
    [4] Anoyatis, G., Lemnitzer, A., 2017. Dynamic pile impedances for laterally–loaded piles using improved Tajimi and Winkler formulations. Soil Dynamics and Earthquake Engineering. 92, 279-97. https://doi.org/10.1016/j.soildyn.2016.09.020.
    [5] Anoyatis, G., Mylonakis, G., 2020. Analytical Solution for Axially Loaded Piles in Two-Layer Soil. J Eng Mech. 146(3), 04020003. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001724.
    [6] Boggs, P.T., Tolle, J.W., 1995. Sequential quadratic programming. Acta numerica. 4, 1-51. https://doi.org/10.1017/S0962492900002518.
    [7] Cacciola, P., Espinosa, M.G., Tombari, A., 2015. Vibration control of piled-structures through structure-soil-structure-interaction. Soil Dynamics and Earthquake Engineering. 77, 47-57. https://doi.org/10.1016/j.soildyn.2015.04.006.
    [8] Cao, X., Wang, S., Gong, W., Wu, W., Dai, G., Zhou, F., 2022. Experimental and theoretical study on dynamic stiffness of floating single pile and pile groups in multi-layered soil. Soil Dynamics and Earthquake Engineering. 157, 107282. https://doi.org/10.1016/j.soildyn.2022.107282.
    [9] Carbonari, S., Morici, M., Dezi, F., Leoni, G., 2018. A lumped parameter model for time-domain inertial soil-structure interaction analysis of structures on pile foundations. Earthquake Engineering & Structural Dynamics. 47(11), 2147-71. https://doi.org/10.1002/eqe.3060.
    [10] Carswell, W., Johansson, J., Løvholt, F., Arwade, S.R., Madshus, C., DeGroot, D.J., Myers, A.T., 2015. Foundation damping and the dynamics of offshore wind turbine monopiles. Renewable Energy. 80, 724-36. https://doi.org/10.1016/j.renene.2015.02.058.
    [11] Chen, S.-S., Shi, J.-Y., 2013. A simplified model for coupled horizontal and rocking vibrations of embedded foundations. Soil Dynamics and Earthquake Engineering. 48, 209–19. https://doi.org/10.1016/j.soildyn.2013.01.018.
    [12] Chen, S.-S., Shi, J.-Y., Doan, M.-T., 2022. A meta-heuristic optimization-based approach for 3D simplified parametric analysis of embedded soil-foundation systems undergoing coupled horizontal-rocking vibrations (Under Revision).
    [13] Chen, S.-S., Shi, J.-Y., Wu, Y.-Y., 2019. Numerical damage localisation for building systems including dynamic soil-structure interaction. Structure and Infrastructure Engineering. 15(3), 362-75. https://doi.org/10.1080/15732479.2018.1552711.
    [14] Chen, S.S., Shi, J.Y., 2006. Simplified model for vertical vibrations of surface foundations. J Geotech Geoenviron. 132(5), 651-5. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(651).
    [15] Chen, S.S., Shi, J.Y., 2011. A response-based simplified model for vertical vibrations of embedded foundations. Soil Dyn Earthq Eng. 31(5-6), 773-84. https://doi.org/10.1016/j.soildyn.2010.12.009.
    [16] Chen, S.S., Shi, J.Y., 2013. A simplified model for coupled horizontal and rocking vibrations of embedded foundations. Soil Dynamics and Earthquake Engineering. 48, 209-19. https://doi.org/10.1016/j.soildyn.2013.01.018.
    [17] Chopra, A.K., Gutierrez, J.A., 1974. Earthquake response analysis of multistorey buildings including foundation interaction. Earthquake Engineering & Structural Dynamics. 3(1), 65-77. https://doi.org/10.1002/eqe.4290030106.
    [18] Chou, J.-S., Karundeng, M.A., Truong, D.-N., Cheng, M.-Y., 2022. Identifying deflections of reinforced concrete beams under seismic loads by bio-inspired optimization of deep residual learning. Structural Control and Health Monitoring. 29(4), e2918. https://doi.org/10.1002/stc.2918.
    [19] Chou, J.-S., Liu, C.-Y., Prayogo, H., Khasani, R.R., Gho, D., Lalitan, G.G., 2022. Predicting nominal shear capacity of reinforced concrete wall in building by metaheuristics-optimized machine learning. Journal of Building Engineering. 61, 105046. https://doi.org/10.1016/j.jobe.2022.105046.
    [20] Chou, J.-S., Nguyen, N.-M., 2020. FBI inspired meta-optimization. Appl Soft Comput. 93 https://doi.org/10.1016/j.asoc.2020.106339.
    [21] Chou, J.-S., Nguyen, N.-M., 2021. Metaheuristics-optimized ensemble system for predicting mechanical strength of reinforced concrete materials. Structural Control and Health Monitoring. 28(5), e2706. https://doi.org/10.1002/stc.2706.
    [22] Chou, J.-S., Nguyen, N.-M., 2022. Scour depth prediction at bridge piers using metaheuristics-optimized stacking system. Automation in Construction. 140, 104297. https://doi.org/10.1016/j.autcon.2022.104297.
    [23] Chou, J.-S., Truong, D.-N., 2020. Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems. Chaos, Solitons & Fractals. 135, 109738. https://doi.org/10.1016/j.chaos.2020.109738.
    [24] Chou, J.-S., Truong, D.-N., 2021a. Multistep energy consumption forecasting by metaheuristic optimization of time-series analysis and machine learning. International Journal of Energy Research. 45(3), 4581-612. https://doi.org/10.1002/er.6125.
    [25] Chou, J.-S., Truong, D.-N., 2021b. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Applied Mathematics and Computation. 389, 125535. https://doi.org/10.1016/j.amc.2020.125535.
    [26] Clough, R.W., Penzien, J., 2003. Dynamics of structures. Berkeley. CA: Computers and Structures.
    [27] Damgaard, M., Andersen, L.V., Ibsen, L.B., 2014. Computationally efficient modelling of dynamic soil–structure interaction of offshore wind turbines on gravity footings. Renewable Energy. 68, 289-303. https://doi.org/10.1016/j.renene.2014.02.008.
    [28] Damgaard, M., Andersen, L.V., Ibsen, L.B., 2015. Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions. Ocean Engineering. 101, 227-34. https://doi.org/10.1016/j.oceaneng.2015.04.039.
    [29] Das, B.M., Luo, Z. Principles of soil dynamics: Cengage Learning, 2016.
    [30] Debarros, F.C.P., Luco, J.E., 1990. Discrete Models for Vertical Vibrations of Surface and Embedded Foundations. Earthquake Engineering & Structural Dynamics. 19(2), 289-303. https://doi.org/10.1002/eqe.4290190211.
    [31] El‐Marsafawi, H., Han, Y.C., Novak, M., 1992. Dynamic Experiments on Two Pile Groups. Journal of Geotechnical Engineering. 118(4), 576-92. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:4(576).
    [32] Gazetas, G., Fan, K., Kaynia, A., 1993. Dynamic response of pile groups with different configurations. Soil Dynamics and Earthquake Engineering. 12(4), 239-57. https://doi.org/10.1016/0267-7261(93)90061-U.
    [33] Ghorbanzadeh, M., Sensoy, S., Uygar, E., 2022. Vibration control of midrise buildings by semi-active tuned mass damper including multi-layered soil-pile-structure-interaction. Structures. 43, 896-909. https://doi.org/10.1016/j.istruc.2022.06.074.
    [34] Goh, A.T., 1999. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Canadian Geotechnical Journal. 36(2), 382-91. https://doi.org/10.1139/t98-110.
    [35] González, F., Padrón, L.A., Carbonari, S., Morici, M., Aznárez, J.J., Dezi, F., Leoni, G., 2019. Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation. Earthquake Engineering & Structural Dynamics. 48(3), 306-27. https://doi.org/10.1002/eqe.3137.
    [36] Gupta, B.K., 2022. Dynamic pile-head stiffness of laterally loaded end-bearing pile in linear viscoelastic soil − A comparative study. Computers and Geotechnics. 145, 104654. https://doi.org/10.1016/j.compgeo.2022.104654.
    [37] Hoang, N.-D., Huynh, T.-C., Tran, V.-D., 2021. Concrete Spalling Severity Classification Using Image Texture Analysis and a Novel Jellyfish Search Optimized Machine Learning Approach. Advances in Civil Engineering. 2021, 5551555. https://doi.org/10.1155/2021/5551555.
    [38] Holland, J.H. Genetic Algorithms and Adaptation. In: Selfridge OG, Rissland EL, Arbib MA, editors. Adaptive Control of Ill-Defined Systems. Boston, MA: Springer US, 1984. p. 317-33.
    [39] Karatzia, X., Mylonakis, G., 2017. Horizontal Stiffness and Damping of Piles in Inhomogeneous Soil. J Geotech Geoenviron. 143(4), 04016113. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001621.
    [40] Kausel, E. Forced vibrations of circular foundations on layered media. 1974. p. 245.
    [41] Kausel, E., Whitman, R.V., Morray, J.P., Elsabee, F., 1978. The spring method for embedded foundations. Nuclear Engineering and Design. 48(2), 377-92. https://doi.org/10.1016/0029-5493(78)90085-7.
    [42] Kaynia, A., 2018. Seismic considerations in design of offshore wind turbines. Soil Dynamics and Earthquake Engineering. 124, 399-407. https://doi.org/10.1016/j.soildyn.2018.04.038.
    [43] Kaynia, A.M., Kausel, E. Dynamic stiffness and seismic response of pile groups. National Science Foundation1982. p. 16586.
    [44] Kaynia, A.M., Kausel, E., 1991. Dynamics of piles and pile groups in layered soil media. Soil Dynamics and Earthquake Engineering. 10(8), 386-401. https://doi.org/10.1016/0267-7261(91)90053-3.
    [45] Lee, M.W.W., Ng, C.W.W., 2016. A new analytical cone model for laterally-loaded vertical piles in cohesionless soil. HKIE Transactions. 23(2), 85-98. https://doi.org/10.1080/1023697X.2015.1131637.
    [46] Li, A.-J., Fatty, A., Yang, I.-T., 2020. Use of Evolutionary Computation to Improve Rock Slope Back Analysis. Applied Sciences. 10(6), 2012. https://doi.org/10.3390/app10062012.
    [47] Lindfield, G., Penny, J. Chapter 9 - Optimization Methods. In: Lindfield G, Penny J, editors. Numerical Methods (Fourth Edition): Academic Press, 2019. p. 433-83.
    [48] Lysmer, J., Kuhlemeyer, R.L., 1969. Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division. 95(4), 859-77. https://doi.org/10.1061/JMCEA3.0001144.
    [49] Lysmer, J., Tabatabaie-Raissi, M., Tajirian, F., Vahdani, S., Ostadan, F. SASSI: A system for analysis of soil-structure interaction1981.
    [50] Lysmer, J., Tabatabaie-Raissi, M., Tajirian, F., Vahdani, S., Ostadan, F. SASSI: A system for analysis of soil–structure interaction problems. University of California1981.
    [51] Martinelli, M., Burghignoli, A., Callisto, L., 2016. Dynamic response of a pile embedded into a layered soil. Soil Dynamics and Earthquake Engineering. 87, 16-28. https://doi.org/10.1016/j.soildyn.2016.03.021.
    [52] Meek, J.W., Wolf, J.P., 1992. Cone Models for Soil Layer on Rigid Rock. II. Journal of Geotechnical Engineering. 118(5), 686-703. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(686).
    [53] Mita, A., Luco, J.E., 1989. Impedance Functions and Input Motions for Embedded Square Foundations. J Geotech Eng-Asce. 115(4), 491-503. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:4(491).
    [54] Miura, K., Kaynia, A.M., Masuda, K., Kitamura, E., Seto, Y., 1994. Dynamic behaviour of pile foundations in homogeneous and non-homogeneous media. Earthquake Engineering & Structural Dynamics. 23(2), 183-92. https://doi.org/10.1002/eqe.4290230206.
    [55] Morici, M., Minnucci, L., Carbonari, S., Dezi, F., Leoni, G., 2019. Simple formulas for estimating a lumped parameter model to reproduce impedances of end-bearing pile foundations. Soil Dynamics and Earthquake Engineering. 121, 341-55. https://doi.org/10.1016/j.soildyn.2019.02.021.
    [56] Mylonakis, G., Gazetas, G., 2000. SEISMIC SOIL-STRUCTURE INTERACTION: BENEFICIAL OR DETRIMENTAL? Journal of Earthquake Engineering. 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
    [57] Nakhaei, M., Ali Ghannad, M., 2008. The effect of soil–structure interaction on damage index of buildings. Engineering Structures. 30(6), 1491-9. https://doi.org/10.1016/j.engstruct.2007.04.009.
    [58] Nguyen, D.-T., Chou, J.-S., Tran, D.-H., 2022. Integrating a novel multiple-objective FBI with BIM to determine tradeoff among resources in project scheduling. Knowledge-Based Systems. 235, 107640. https://doi.org/10.1016/j.knosys.2021.107640.
    [59] Novak, M., 1974. Dynamic Stiffness and Damping of Piles. Canadian Geotechnical Journal. 11(4), 574-98. https://doi.org/10.1139/t74-059.
    [60] Novak, M., Aboul-Ella, F., 1978. Impedance functions of piles in layered media. ASCE J Eng Mech Div. 104, 643-61. https://doi.org/10.1061/JMCEA3.0002546.
    [61] Novak, M., F.Grigg, R., 2011. Dynamic experiments with small pile foundations. Canadian Geotechnical Journal. 13, 372-85. https://doi.org/10.1139/t76-039.
    [62] Novak, M., Nogami, T., 1977. Soil-pile interaction in horizontal vibration. Earthquake Engineering & Structural Dynamics. 5(3), 263-81. https://doi.org/10.1002/eqe.4290050305.
    [63] Ostadan, F. Dynamic Analysis of Soil-Pile-Structure Systems. University of California, Berkeley, California: University of California, Berkeley, California, 1983.
    [64] Pal, A.S., Baidya, D.K., 2018. Dynamic Analysis of Pile Foundation Embedded in Homogeneous Soil Using Cone Model. J Geotech Geoenviron. 144(8), 06018007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001927.
    [65] Rachedi, M., Matallah, M., Kotronis, P., 2021. Seismic behavior & risk assessment of an existing bridge considering soil-structure interaction using artificial neural networks. Engineering Structures. 232, 111800. https://doi.org/10.1016/j.engstruct.2020.111800.
    [66] Reissner, E., 1936. Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingungen eines homogenen elastischen Halbraumes. Ingenieur-Archiv. 7(6), 381-96. https://doi.org/10.1007/BF02090427.
    [67] Saitoh, M., 2007. Simple model of frequency-dependent impedance functions in soil-structure interaction using frequency-independent elements. J Eng Mech. 133(10), 1101-14. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1101).
    [68] Saitoh, M., 2012. On the performance of lumped parameter models with gyro-mass elements for the impedance function of a pile-group supporting a single-degree-of-freedom system. Earthquake Engineering & Structural Dynamics. 41(4), 623-41. https://doi.org/10.1002/eqe.1147.
    [69] Saitoh, M., 2022. On the modeling of frequency- and intensity-dependent impedance functions at the head of horizontally loaded single piles. Soils and Foundations. 62, 101107. https://doi.org/10.1016/j.sandf.2022.101107.
    [70] Shadlou, M., Bhattacharya, S., 2016. Dynamic stiffness of monopiles supporting offshore wind turbine generators. Soil Dynamics and Earthquake Engineering. 88, 15-32. https://doi.org/10.1016/j.soildyn.2016.04.002.
    [71] Shaheen, A.M., El-Sehiemy, R.A., Alharthi, M.M., Ghoneim, S.S.M., Ginidi, A.R., 2021. Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework. Energy. 237, 121478. https://doi.org/10.1016/j.energy.2021.121478.
    [72] Shi, J.Y., 2020. A systematic modeling approach for layered soil considering horizontal and rotational foundation vibrations. Comput Struct. 239 https://doi.org/10.1016/j.compstruc.2020.106336.
    [73] Shi, J.Y., Chen, S.S., Chen, K.Y., 2021. A simplified model of layered soil for analyzing vertical vibration of loaded foundations. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2021.1919152.
    [74] Simpson, A.R., Priest, S.D., 1993. The application of genetic algorithms to optimisation problems in geotechnics. Computers and Geotechnics. 15(1), 1-19. https://doi.org/10.1016/0266-352X(93)90014-X.
    [75] Tassoulas, J.L., Kausel, E. Elements for the numerical analysis of wave motion in layered media: Massachusetts Institute of Technology, 1981.
    [76] Tassoulas, J.L., Kausel, E., 1983. Elements for the numerical analysis of wave motion in layered strata. Int J Numer Anal Methods Geomech. 19(7), 1005-32. https://doi.org/10.1002/nme.1620190706.
    [77] Tesar, A., Drzik, M., 1995. Genetic algorithms for dynamic tuning of structures. Comput Struct. 57(2), 287-95. https://doi.org/10.1016/0045-7949(94)00610-F.
    [78] Van Nguyen, D., Kim, D., 2020. Dynamic soil-structure interaction analysis in time domain based on a modified version of perfectly matched discrete layers. Journal of Rock Mechanics and Geotechnical Engineering. 12(1), 168-79. https://doi.org/10.1016/j.jrmge.2019.06.006.
    [79] Veletsos, A.S., Meek, J.W., 1974. Dynamic behaviour of building-foundation systems. Earthquake Engineering & Structural Dynamics. 3(2), 121-38. https://doi.org/10.1002/eqe.4290030203.
    [80] Veletsos, A.S., Wei, Y.T., 1971. Lateral and Rocking Vibration of Footings. Journal of the Soil Mechanics and Foundations Division. 97(9), 1227-48. https://doi.org/10.1061/JSFEAQ.0001661.
    [81] Wang, H., Liu, W., Zhou, D., Wang, S., Du, D., 2013. Lumped-parameter model of foundations based on complex Chebyshev polynomial fraction. Soil Dynamics and Earthquake Engineering. 50, 192-203. https://doi.org/10.1016/j.soildyn.2013.02.001.
    [82] Wang, J., Zhou, D., Liu, W.Q., Wang, S.G., 2016. Nested Lumped-Parameter Model for Foundation with Strongly Frequency-dependent Impedance. Journal of Earthquake Engineering. 20(6), 975-91. https://doi.org/10.1080/13632469.2015.1109568.
    [83] Wilson, E.L., Habibullah, A., SAP2000 Nonlinear V.14 – Integrated softwarefor structural analysis and design (CD-ROM), 2008, Computer and Structures,Inc. (Version 14.0.1)
    [84] Wolf, J.P., 1997. Spring-dashpot-mass models for foundation vibrations. Earthquake Engineering & Structural Dynamics. 26(9), 931-49. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<931::AID-EQE686>3.0.CO;2-M.
    [85] Wolf, J.P., Meek, J.W., 1993. Cone models for a soil layer on a flexible rock half-space. Earthquake Eng Struc. 22(3), 185-93. https://doi.org/10.1002/eqe.4290220302.
    [86] Wolf, J.P., Meek, J.W., 1994. Rotational cone models for a soil layer on flexible rock half-space. Earthquake Eng Struc. 23(8), 909-25. https://doi.org/10.1002/eqe.4290230807.
    [87] Wolf, J.P., Meek, J.W., Song, C. Cone models for a pile foundation. Piles under dynamic loads1992. p. 94-113.
    [88] Wolf, J.P., Paronesso, A., 1992. Lumped-Parameter Model for a Rigid Cylindrical Foundation Embedded in a Soil Layer on Rigid Rock. Earthquake Engineering & Structural Dynamics. 21(12), 1021-38. https://doi.org/10.1002/eqe.4290211201.
    [89] Wolf, J.P., Somaini, D.R., 1986. Approximate dynamic model of embedded foundation in time domain. Earthquake Engineering & Structural Dynamics. 14(5), 683-703. https://doi.org/10.1002/eqe.4290140502.
    [90] Won, J., Shin, J., 2021. Machine Learning-Based Approach for Seismic Damage Prediction Method of Building Structures Considering Soil-Structure Interaction. Sustainability. 13(8), 4334. https://doi.org/10.3390/su13084334.
    [91] Wong, H.L., Luco, J.E., 1985. Tables of impedance functions for square foundations on layered media. International Journal of Soil Dynamics and Earthquake Engineering. 4(2), 64-81. https://doi.org/10.1016/0261-7277(85)90002-6.
    [92] Wu, W.H., Lee, W.H., 2002. Systematic lumped-parameter models for foundations based on polynomial-fraction approximation. Earthquake Engineering & Structural Dynamics. 31(7), 1383-412. https://doi.org/10.1002/eqe.168.
    [93] Wu, W.H., Lee, W.H., 2004. Nested lumped-parameter models for foundation vibrations. Earthquake Engineering & Structural Dynamics. 33(9), 1051-8. https://doi.org/10.1002/eqe.382.

    無法下載圖示 全文公開日期 2026/01/03 (校內網路)
    全文公開日期 2026/01/03 (校外網路)
    全文公開日期 2026/01/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE