簡易檢索 / 詳目顯示

研究生: 林義倫
Yi-lun Lin
論文名稱: 聚苯乙烯馬來酸酐共聚合物之合成及與環氧樹脂硬化行為之研究
A study on synthesis and characterization of the Poly(styrene maleic anhydride) copolymer and the curing behavior of epoxy resins
指導教授: 邱顯堂
Hsien-tang Chiu
口試委員: 陳志堅
Jyh-chien Chen
陳建光
Jem-kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 聚苯乙烯馬來酸酐馬來酸酐雙酚A型環氧樹脂混摻
外文關鍵詞: Styrene maleic anhydride(SMA)
相關次數: 點閱:387下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究乃在探討依四種不同比例硬化劑(SMA/MA)使用公、自轉高速均質脫泡攪拌機攪拌進行複合混摻再與雙酚A型環氧樹脂(DGEBA)進行硬化反應,實驗主要分成兩部分。第一部分是合成聚苯乙烯馬來酸酐共聚合物(SMA),合成後進行核磁共振光譜 (1H NMR) 、傅立葉轉換紅外線光譜(FT-IR)、膠體滲透層析(GPC)、元素分析(EA)、熱示差掃描量熱分析(DSC)、熱重損失分析(TGA)及溶解度等分析鑑定。由核磁共振光譜圖可知成功合成聚苯乙烯馬來酸酐共聚合物、其Mw為22000、玻璃轉移溫度為205oC。在氮氣中最大熱裂解溫度(Tdmax)為390 oC。且易溶於工業上常用之溶劑,故在加工使用上相當方便。
第二部分則是以SMA、MA及DGEBA分成四種比例進行混摻硬化,並對硬化後樹脂的熱性質與物理性質加以研究探討,以傅立葉轉換紅外線光譜(FT-IR) 、熱示差掃描量熱分析(DSC)、熱重損失分析(TGA)、熱動態機械分析(DMA)及抗曲測試等分析。經由傅立葉轉換紅外線光譜分析及熱示差掃描量熱分析可觀察出硬化之結構與放熱行為。各硬化後樹脂在氮氣中最大熱裂解溫度(Tdmax)皆在365 oC以上。玻璃轉移溫度約在70 oC。在熱動態機械分析中發現,隨著SMA比例愈高之硬化樹脂試片,其網狀結構較緻密、交聯密度較大。故SMA/MA/DGEBA之熱穩定性優異,經複合混摻後之應用更加廣泛。


In this study, we aim to analyze the curing behavior between SMA/MA and DGEBA. The four different ratios of SMA/MA hybrid hardener were well-blended using planetary mixer and cured with DGEBA. The experimental were divided into two parts. Part (i) described the synthesis of SMA, and the results were examined through HNMR, FTIR, GPC, EA, DSC, TGA and solubility. From 1H NMR result, the SMA was synthesized successfully and the properties were Mw (22000), Tg(205 oC) and Tdmax (390 oC).The solubility was high and easy for use.
Part (ii) described the effects of four different ratios of SMA/MA hybrid hardener on the properties of cured DGEBA. The experimental was carried out via FT-IR, DSC, TGA, DMA and bending test. From FTIR and DSC results, the curing behavior and structure could be observed which the Tdmax (>90%) and Tg(~70 oC) of all cured DGEBA. Moreover, the network density and cross-linking degree of cure DGEBA increased with the increase in SMA ratio. Therefore, SMA/MA/DGEBA exhibited the high thermal stability in various applications.

摘要 I 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第一章、緒論 1 1-1、研究背景 1 1-2、高分子混掺(polymer blends) 2 1-3、聚摻的方法 2 一、機械式熔融摻合(mechanical melt blending) 3 二、機械式化學摻合(mechanical chemical blending) 3 三、溶液摻合(solution blending) 3 四、乳交摻合(latex blending) 4 五、共交聯摻合(co-crosslinking) 4 第二章、文獻回顧 5 2-1、自由基共聚合反應原理 5 2-2、聚苯乙烯馬來酸酐(SMA)共聚合物文獻回顧 7 2-3、聚苯乙烯馬來酸酐共聚合物相關文獻 12 2-4、環氧樹脂 16 2-4-1、環氧樹脂簡介 16 2-4-2、環氧樹脂之發展 16 2-4-3、雙酚A型環氧樹脂的合成與製造 17 2-4-4、環氧樹脂的種類與官能基表示方式 19 2-4-5、環氧樹脂的改質 22 2-4-6、硬化劑對環氧樹脂的影響 22 2-4-7、各種用途不同的硬化劑 24 2-4-8、酸酐型硬化劑與環氧樹脂的特性與總類 26 2-4-9、硬化反應的基本理論 28 2-4-10、環氧樹脂的特性與應用 35 第三章、實驗方法與步驟 37 3-1、實驗流程 37 3-2、實驗藥品 38 3-3、實驗儀器原理及操作程序 39 3-3-1、超導核磁共振光譜儀 500 MHz(Nuclear Magnetic Resonance Spectroscopy, NMR) 39 3-3-2、元素分析儀(Elemental analyzer, EA) 39 3-3-3、膠體滲透層析儀 (Gel Permeation Chromatography, GPC) 40 3-3-4、傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR)41 3-3-5、熱重損失分析儀(Thermal Gravimetric Analyzer, TGA) 41 3-3-6、熱示差掃描量熱儀(Differential Scanning Calorimeter, DSC) 42 3-3-7、熱動態機械分析(Dynamic Mechanical Analysis, DMA) 43 3-3-8、三點抗曲測試(Three-point deflection test) 44 3-4、合成聚苯乙烯馬來酐共聚合物 44 3-5、聚苯乙烯馬來酸酐與環氧樹脂摻合及硬化 45 第四章、結果與討論 47 4-1、聚苯乙烯馬來酸酐的鑑定與分析 47 4-2、聚苯乙烯馬來酸酐與環氧樹脂硬化過程分析 48 4-3、硬化劑和環氧樹脂硬化後熱性質分析 49 4-3-1、熱重損失分析(TGA) 49 4-3-2、熱示差掃描量熱分析(DSC) 50 4-3-3、熱動態機械分析(DMA) 50 4-4、硬化劑和環氧樹脂硬化後物性分析(Bending test) 51 第五章、結論 62 參考文獻 63 附錄 67 作者簡介 72

[1] 賴耿陽, 環氧樹脂應用實務, 1999.
[2] L. A. Utracki, Polymer. Eng. Sci., 1982, 22, 17, 1166-1175.
[3] M. T. Shaw, Polymer. Eng. Sci., 1982, 22, 2, 115-123.
[4] W. Paul, Macromolecules, 1979, 3, 3, 129–156.
[5] H. Tobita, A. E. Hamielec, Polymer, 1991, 32, 14, 2641-2647.
[6] T. Alfrey, E. Lavin, J. Am. Chem. Soc., 1945, 67, 11, 2044-2045.
[7] E. Tsuchida, T. Tomono, Die Macromoleculare Chem., 1971, 141, 3488, 265-298.
[8] J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook (4th Ed.), 25-29.
[9] Y. Wang, J. Y. Guo, Polymer Composites, 2010, 31, 4, 596–603.
[10] L. W. Tang, K. C. Tam, C. Y. yue, X. Hu, Y. C. Lam, L. Li, J Appl. Polymer. Sci., 2002, 85, 209–217.
[11] J. H. Jeong, Y. S. Byoun, Y. S. Lee, Reac. & Func. Polymer, 2002, 50, 257-263.
[12] C. M. Jugroot, T. G. M. Van, M. A. Whitehead, J. Phys. Chem., 2005, 109, 7022-7032.
[13] J. F. Su, L. X. Wang, L. Ren, Colloid & Surface A: Phys. Chem., 2007, 299, 268-275.
[14] S. Datta, N.Dharmarcwan, G.Verstwte, and L.Ban, POLYM. ENG. & Sci., 1993, 33, 12, 721-735.
[15] C. Koning1, A. Ikker, R. Borggreve1, L. Leemans1 and M. Moller, Polymer, 1993, 34, 21, 4410-4416.
[16] K. Dedecker and G. Groeninckx, Macromolecules, 1999, 32, 8, 2472–2479.
[17] Z. Z. Tsai, C. W. Yu, Y.H. Company Technology Support Details, 2011.
[18] K. Wang, W. Huang, P. Xia, C. Cao, D. Yan, Reac. & Func. Polymer, 2002, 52, 143-148.
[19] L. P. Zhu, X. X. Zhang, L. Xu, C. H. Du, B. K. Zhu, Y. Y. Xu, Colloid & Surface A: Phys. Chem., 2007, 57, 189-197.
[20] X. L. Lai, C. D. Sun, H. Tian, W. J. Zhao, L. Gao, International Journal of Pharmaceutics, 2008, 352, 66-73.
[21] C. Li, X. G. Pan, C. F. Hua, J. H. Su, H. Tian, European Polymer Journal, 2003, 39, 1091-1097.
[22] R. Jones, C. S. Winter, R. H. Tredgold, P. Hodge, A. Hoorfar, Polymer., 1987, 28, 1619-1626.
[23] M.K.Akkapeddi, B. VanBuskirk, Advances in Polymer. Tech., 1992, 11, 4, 263-275.
[24] R. Holsti-Miettinen, J. Seppala, Polymer. Eng. Sci., 1992, 32, 868-877.
[25] M. Xanthos, Polymer. Eng. Sci., 1988, 28, 21, 1392-1400.
[26] M. Xanthos, and S.S. Dagli, Polymer. Eng. Sci., 1991, 31, 13, 929-935.
[27] P. L. Ku, Advances in Polymer. Tech., 1988, 8, 2, 177-196.
[28] J. H. Kim, H. Keskkula, D. R. Paul, J Appl. Polymer. Sci., 1990, 40, 183-201.
[29] M. R. Grancio, Polymer. Eng. Sci., 1972, 12, 3, 213-218.
[30] E. H. Merz, G. C. Claver, M. Baer, J Polymer. Sci., 1956, 22, 325-341.
[31] R. W. Wang, W. Wang, J App. Polymer. Sci., 2003, 90, 2260-2267.
[32] R.A. Pearson, A.F. Yee, J Materials Sci., 1986, 21, 2475–2488.
[33] J.A. Schmitt, H. Keskkula, J App. Polymer. Sci., 1960, 3, 8, 132-142.
[34] S. Newman, S. Strella, J App. Polymer. Sci., 1965, 9, 2297-2310.
[35] C. R. Chiang, F. C. Chang, Polymer, 1997, 38, 19, 4807-4817.
[36] M. Y. Ju, F. C. Chang, 2000, 41, 1719-1730.
[37] J. J. Qin, M. H. Oo, Y. Li, J Membrane Sci., 2005, 247, 137-142.
[38] J. H. Kim, C. K. Kim, J Membrane Sci., 2005, 262, 60-68
[39] L. P. Zhu, Z. Yi, F. Liu, X. Z. Wei, B. K. Zhu, Y. Y. X, European Polymer. J, 2008, 44, 1907-1914.
[40] P. Castan, Swiss. Patent, 1940, 211, 116.
[41] N. Prileschajew, European J Inorganic Chem, 1909, 4, 42, 4811-4815.
[42] P. Schlack, B. Lichtenberg, US. Patent, 1939, 2,144,202.
[43] S. O. Greenlee, US. Patent, 1950, 2,521,911.
[44] P. Castan, Swiss. Patent, 1943, 2,324,483.
[45] S. O. Greenlee, US. Patent, 1948, 2,456,408.
[46] K. Othmer, Encyclopedia of Chemical Technology 4th Ed., 1991, 730-737.
[47] 陳平, 劉勝平, 王德中, 環氧樹脂及其應用, 2011.
[48] F. J. McGarry, J. N. Willner, Civil Eng., 1968, 159, 51-56.
[49] J. Pinnavaia, T. Lan, D. Padmananda, Chem. Mater., 1994, 6, 573-575.
[50] L.Gianfreda, J. M. Bollag, Soil. Sci.Soc.Am.J, 58, 1672–1681.
[51] J. Pinnavaia, T. Lan, D. Padmananda, Chem. Mater., 1995, 7, 2144-2150.
[52] 許明發, 郭文雄, 複合材料, 2004.
[53] 賴耿陽, 環氧樹脂應用實務, 1999.
[54] 陳平, 劉勝平, 王德中, 環氧樹脂及其應用, 2011.
[55] 姜智敏, 高師大化研所碩士論文, 2000.
[56] 賴耿陽, 金屬的化成處理, 1999.

無法下載圖示 全文公開日期 2017/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE