簡易檢索 / 詳目顯示

研究生: 張為凱
Wei-kai Chang
論文名稱: 應用PIII技術探討鋁合金表面氮化鋁生成機制
Applying PIII process to study the Growth Mechanism of AlN / Al Alloys
指導教授: 吳翼貽
Ye-ee Wu
口試委員: 郭俞麟
none
蔡文發
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: PIIIAlNGDSXPSAFM奈米壓痕試驗機Al-Zn-Mg 鋁合金AA7005 鋁合金奈米壓痕試驗機
外文關鍵詞: PIII, AlN, GDS, XPS, AFM, aluminum alloy, nano-indentation, wear resistance, friction coefficient
相關次數: 點閱:261下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係應用電漿浸沒離子佈植技術(PIII, Plasma Immersion Ion Implantation)來探討鋁合金表面氮化鋁之生成機制。在本研究內以AA7005鋁合金、1N30商用純鋁、高純度5N級純鋁 (Super High Purity Aluminum 5N)為基材,探討PIII製程參數、及後續析出熱處理製程對表面改質層厚度及微觀結構的影響。
本研究所用之PIII脈衝電壓為10kV至30kV,工作時間(120min.)與工作氣壓(1x10-3 torr)為固定參數,試片經PIII處理後應用奈米壓痕試驗機(nano-indentor)與輝光放電光譜分析儀(GDS, Glow Discharge Spectrometer)來得到硬度縱深曲線圖以及氮(N)元素縱深分佈曲線圖,並以Flat-on-Flat方式進行表面摩擦係數之量測;再以金相試驗、掃描式電子顯微鏡(SEM)、及應用雙粒子束聚焦式離子束(DB-FIB)技術製作穿透式電子顯微鏡試片觀察改質層之生成分佈、厚度及微觀結構。
研究結果顯示,脈衝電壓越高,氮離子之植入深度越深,且植入劑量越大。當離子注入劑量達到一定值與植入深度後,便開始在試片外部處堆積,難以再往較深處移動,惟在較少雜質與合金元素影響之5N級純鋁中則有隨著脈衝電壓升高,氮元素之高峰值有向試片內部移動之現象。隨著離子注入劑量之上升,鋁合金試片表面的硬度提升越趨明顯,其中以5N級純鋁表面硬度上升幅度最大。將離子佈植過之試片進行熱處理後,在試片內部的氮元素會向外擴散,導致改質層厚度縮減。微觀結構之觀察顯示試片經熱處理後有氣泡在白層內生成,氣泡之生成將嚴重影響白層之平坦度進而使得摩擦係數上升;在氮化層內觀察到多量氣泡(bubble)之1N30試片的摩擦係數最高(0.130)。試片經PIII處理再經雷射表面熱處理後,未能提昇表面硬度值,且降至未改質試片之表面硬度值。


The objective of this study is to investigate the growth mechanism of AlN on Aluminum alloys by applying Nitrogen Plasma Immersion Ion Implantation (N-PIII) technique to treat the surface layer of the aluminum alloy. AA7005、commercially pure aluminum (1N30) and super high purity aluminum(5N) are used as the substrate material in this study. Effects of bias voltage 10 kV, 20kV and 30kV of N-PIII process on the thickness, growth rate and microstructure of the modified layer was studied. The influences post-process heat-treatment on the microstructure and the surface characteristics of the modified layer were investigated and analyzed. Nano-indentation test and Glow Discharge Spectrometer (GDS) test were conducted on the treated specimens to obtain the depth evolution profiles of the hardness and the depth profiles of nitrogen element from the surface of specimen, respectively. The friction coefficients of the modified layer were measured by Flat-on-Flat method.
Specimens being N-PIII treated were subjected to heat treatments. Then, nano-indentation test, GDS test, Flat-on-Flat test were conducted on these heat-treated specimens to examine the effects of post-process heat treatment on the surface properties of the modified layer.
Experimental results showed that the penetration depth of nitrogen ion is related to the bias voltage and the impurity contents of aluminum alloy. The higher bias voltage, the deeper penetration depth and the larger nitrogen ions dosage. High bias voltage can significantly increase the surface hardness of treated specimens; the effect is highly profound in 5N specimens.
After the heat-treatment, internal nitrogen in the specimen would diffuse to the external, and reduce the width of modified layer. This phenomenon can promote the formation of aluminum nitride, and to get better surface property. The microstructure observation showed that, after heat treatment bubbles were generated in the white layer which is a compound layer of AlN, εnitrateγ'nitrate. The generate of bubbles will severely affect the flatness of the aluminum nitride layer, increasing the coefficient of friction of the specimen. Specimen subjected to PIII treatment plus laser surface heat treatment, failed to improve the surface hardness, and the value of surface hardness reduced to the hardness values of unmodified specimen.

摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 1.3研究方法 3 第二章 文獻探討 4 2.1 鋁及鋁合金之簡介 4 2.1.1 鋁合金之分類與介紹 4 2.1.2鋁合金之狀態命名 7 2.2 7xxx系鋁合金之析出強化機制 8 2.2.1 合金元素對7xxx鋁合金之影響 12 2.3 7xxx系列鋁合金熱處理 14 2.3.1 低溫人工時效熱處理 14 2.2.2 T6熱處理 14 2.2.3 T7熱處理 15 2.4電漿之生成 16 2.4.1 電漿浸沒離子佈植 16 2.4.2 離子轟擊效應 19 2.5 氮化鋁(AlN) 20 2.6奈米壓痕試驗之硬度與彈性模數理論建立 23 第三章 實驗方法 33 3.1實驗流程 33 3.2實驗材料與成分分析 35 3.3試片表面改質 36 3.3.1 試片前製處理 36 3.3.2電漿浸沒離子佈植(PIII) 37 3.3.3 熱處理流程 41 3.3.4 雷射表面熱處理 44 3.4輝光放電分析(GDS) 46 3.5奈米壓痕量測 48 3.6 X光繞射(XRD)分析 49 3.7金相組織觀察 50 3.8掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 51 3.9 場發射雙束型聚焦離子束顯微鏡 (Dual Beam Focused Ion Beam ,FIB) 53 3.10穿透式電子顯微鏡微觀組織觀察 55 3.11 摩擦係數測試 57 第四章 結果與討論 59 4.1 氮離子縱深分佈 59 4.1.1能量效應 60 4.1.2熱處理製程之影響 63 4.2表面硬度值 72 4.3顯微組織觀察 79 4.3.1 金相顯微組織 79 4.3.2掃描式電子顯微鏡剖面觀察與EDS 元素分析 82 4.3.3穿透式電子顯微鏡觀察 87 4.4摩擦係數試驗 94 4.4.1 經PIII處理 94 4.4.2 PIII處理後進行後續熱處理 95 4.4.3 對磨面之掃描式電子顯微鏡觀察 96 4.5雷射表面熱處理 100 4.6基材效應分析 104 第五章 結論與未來研究方向 107 5.1 結論 107 5.2 未來研究方向 109 參考文獻 110

[1]P. Vissutipitukul, T. Aizawa, “Wear of plasma-nitrided aluminum
alloys,”Wear 259 (2005) 482–489.
[2]RJ Rodriguez, A Sanz, A Medrano, JA Garcia-Lorente,
“Tribologicalproperties of ion implanted Aluminum alloys,” Vacuum
52(1999)187-192.
[3]L. Guzman, G. Bonini, M. Adami, P.M. Ossi, A. Miotello, M.
Vittori-Antisari, A.M. Serventi, E. Voltolini, “Mechanical behavior
of nitrogen-implanted aluminium alloys,” Surface Coating
Technology 83(1996) 284-289.
[4]K.C. Walter,, R.A. Dodd , J.R. Conrad, “Corrosion behavior of
nitrogen implanted aluminum,” Nuclear Instruments and Methods
in Physics Research B 106 (1995) 522-526.
[5]R. Sonnleitner., K. Spiradek-Hahna, F. Rossi, “Microstructure of
plasma nitrided layers on aluminium,” Surface and Coatings
Technology 156(2002) 149–154.
[6]D. R. Askeland and P. P. Phule, The Science and Engineering of Materials,
4th Edition, Thomson Learning, p. 594, 2003.
[7]J.J. Thompson, E.S. Tankins and V.S. Agarwala, “A Heat Treatment for
Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7xxx
Aluminum Alloys,” Materials Performance, Vol. 26, pp. 45-52, 1987.
[8]D.A. Porter, K.E. Easterling, “Phase Transformation in Metals and Alloy,”
2nd ed, pp.144-147, 1992.
[9]J.C. Werenskiold, A. Deschamps and Y. Brechet, “Characterization and
Modeling of Precipitation Kinetics in an Al-Zn-Mg Alloys,” Materials
Science and Engineering A, Vol. A293, pp.267-274, 2000.
[10]劉國雄,林樹均與葉均蔚,鋁及鋁合金的製造,民國74年。
[11]D. Altenpohl, Aluminium and Aluminuim Legierungen, Springer
Verlag, p. 773, 1965.
[12]W. Gruhl, “The Stress Corrosion Behavior of High Strength
Al-Zn-Mg Alloys,” Aluminium, Vol. 54, pp. 323-325, 1978.
[13]W. Gruhl, “The Stress-Corrosion Behavior of High-Strength
Al-Zn-Mg Alloys,” International Congress on Aluminum Alloys in
the Aircraft Industry, pp. 171-174, 1976.
[14]J.J. Thompson, E.S. Tankins and V.S. Agarwala, “A Heat Treatment
for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in
7xxx Aluminum Alloys,” Materials Performance, Vol. 26, pp. 45-52, 1987.
[15]H.T. Kim, S.W. Nam and S.H. Hwang, “Study on the solidfication
cracking behaviour of high strength aluminum alloy welds-effect of
alloying elements and solidfication behaviours,” Journal of
Materials Science, vol. 31, pp. 2859-2864, 1996.
[16]F.M. Mazzolani, Aluminum and Aluminum Structure, 2nd ed., pp.
7-8, 1987.
[17]Z. Lin, H. Ru, G. Zhao and G. Sun: 10th International Congress on
Metallic Corrosion, Vol. 3, pp. 2369-2378, 1988.
[18]J.L. Ning, D.M. Jiang, X.G. Fan, Z.H. Lai, Q.C. Meng, and D.L.
Wang, “Mechanical properties and microstructure of Al-Mg-Mn-Zr
alloy processed by equal channel angular pressing at elevated
temperature,” Materials Characterization 59, pp.306-311, 2008.
[19]P.Z. Zhao, and T. Tsuchida, “Effect of fabrication conditions and Cr,
Zr contents on the grain structure of 7075 and 6061 aluminum alloys,”
Materials Science and Engineering A 499, pp. 78-82, 2009,
[20]I.J. Polmear, “The Properties of Commercial Al-Zn-Mg Alloys:
Practical Implications of Trace Additions of Silver,” Journal of the Japan
Institute of Metals, Vol. 89, pp. 193-202, 1960.
[21]H. Tsubakino, A. Yamamoto and T. Ohnishi, “Effect of Fe and Si on
Precipitation of 7050 Aluminum Alloys,” International Conference
on Thermo-mechanical Processing of Steels and Other Materials, pp.
1059-1064, 1997.
[22]P.N.T. Unwin and R.B. Nicholson, “The Nucleation and Initial
Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg
alloys,” Acta Metallurgica, Vol. 17, pp. 1379-1393, 1969.
[23]黃清添,析出製程參數對AA7005鋁擠型合金機械性質與抗應力 腐蝕之影響,國立台灣
科技大學機械工程研究所碩士論文,民國92年。
[24]J.K. Park and A.J. Ardell, “Microstructures of the Commercial 7075
Al Alloys in the T651 and T7 Tempers,” Metallurgical Transaction A, Vol.
14A, pp. 1957-1965, 1983.
[25]M.O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys,”
Metallurgical Transaction A, Vol. 6A, pp. 631-642, 1975.
[26]T. Engdahl, V. Hansen, P.J. Warren and K. Stiller, “Investigation of
Fine Scale Precipitates in Al-Zn-Mg Alloys after Various Heat Treatments,”
Materials Science and Engineering A, pp. 59-64, 2002.
[27]Munson, B. Cluggish, B. Wood, K. Walter , “Plasma Source Ion
Implantation Research, Development, and Applications,” Progress
Report 1997–1998.
[28]Y. Hara, T. Yamanishi, K. Azuma, H. Uchida, M. Yatsuzuka,
“Microstructure of Al-alloy surface implanted with high-dose
nitrogen,”Surface and Coatings Technology 156 (2002) 166–169.
[29]蔡文發博士, “電漿浸沒離子佈植技術,” 核研所PIII 技術介 紹。
[30]Hongxi Liu , Baoyin Tang, Langping Wang, Xiaofeng Wang, Bo
Jiang,“Fatigue life and mechanical behaviors of bearing steel by nitrogen
plasma immersion ion implantation ,” Surface & Coatings Technology
201(2007) 5273–5277.
[31]H.R Stock, C. Jarms, F. Seidel, J.E. Doring, “Fundamental and
applied aspects of the plasma-assisted nitriding process for aluminum and
its alloys,” Surface and Coating Technology 94-95(1997) 247-254.
[32] R. Sonnleitner., K. Spiradek-Hahna, F. Rossi, “Microstructure of
plasma nitrided layers on aluminium,” Surface and Coatings
Technology 156 (2002) 149–154.
[33]王超賢,電漿浸沒式離子佈植技術於氮化表面改質 304 不鏽鋼 之應用研究,國立清
華大學工程與系統科學系電漿組碩士論文,民國九十四年。
[34]Douglas E. Wolfe , Jogender Singh, “Titanium carbide coatings
deposited by reactive ion beam-assisted, electron beam–physical
vapor deposition,” Surface and Coatings Technology 124(2000)142–153
[35]James H. Edgar and W. J. Meng, “Chapter 1-3 Crystalstructure,
Mechanical properties, Thermal properties and Refractive index of
AlN”Properties of Group III Nitrides, INSPEC. Institution of
Electrical Engineers, London, 1993.
[36]Bernard Gil and Fernando A. Ponce, “Chapter 4 Structural defects
andMaterial Performance of III-V Nitrides” Group III Nitrides
Semiconductor Compounds Physics and Applications, The McGraw-Hill
Companies, Inc.,1998, p124, p127, p197.
[37]C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popescu,
“Optical,Electrical and structural properties of AlN thin films” IEEE
Proceedings of theInternational Semiconductor Conference, CAS,
1995, pp. 193-186.
[38]D. F. Lii, J. L. Huang, S. T. Change, “The mechanical property of
squeeze casting AlN/Al composite” Key Engineering Materials, v
206-213, n II, 2001, pp. 1057-1060.
[39]A. M. Sanchez, F. J. Pacheco, S. I. Molina,“AlN buffer layer
thickness influence on inversion domains in GaN/AlN/Si(111)”,
Material Science and Engineering, B93, 2002, pp181-185.
[40]P. K. Kuo, G. W. Auner and Z. L. Wu, “Microstructure and
Thermal Conductivity of Epitaxial AlN Thin Films” Thin Solid
Films, v 253, 1994, pp.223-227.
[41]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction
to Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991.
[42]S.H. Lee, H.J. Ryoo, J.J. Lee, “(Ti1-xAlxN) coatings by
plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol.
A12 (1994) 1602.
[43]Munson, B. Cluggish, B. Wood, K. Walter , “Plasma Source Ion
Implantation Research, Development, and Applications,” Progress
Report 1997–1998.
[44]黃清添,析出製程參數對AA7005鋁擠型合金機械性質與抗應力
腐蝕之影響,國立台灣科技大學機研所碩士論文,民國92年。
[45]徐煌仁、吳翼貽、林裕章,“AA7005鋁合金擠型材T6熱處理製程之研究”,金屬熱處
理,第76期,第18-23頁,民國92年。
[46]ASTM Standards B597, “Standard Practice for Heat Treatment of
Aluminum Alloys,” 1992.
[47]林國政,以Nd:YAG 雷射表面合金化鎳基及鈷基粉末於7075 鋁
合金性質之研究,國立成功大學材料科學及工程學系研究所碩士論文,民國97年。
[48]Hongxi Liu , Baoyin Tang, Langping Wang, Xiaofeng Wang, Bo
Jiang,“Fatigue life and mechanical behaviors of bearing steel by
nitrogen plasma immersion ion implantation ,” Surface & Coatings
Technology 201(2007) 5273–5277.
[49]林明為M. W. Lin、羅聖全S. C. Lo、朱仁佑J. Y. Chu、蔡枝松C. S.
Tsai、林麗娟L. J. Lin、 葉吉田J. T. Yeh,雙粒子束聚焦式離束
(DB-FIB)技術在材料檢測分析上之應用與發展,工研院材化所
(MCL/ITRI) 材料檢測分析技術專題,民國96年。
[50]M. Ueda, I. Oney, M.Yildiz, Y. Akalin, A.H. Ucisik, Vacuum
Vol.73(2004) , pp.505-510.
[51]陳力俊、張力、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子
顯微鏡學,行政院國家科學委員會機密儀器發展中心,pp.
347-348,民國83年。
[52]Tetsuji YamanishiU, Yoshihito Hara, Ryuhei Morita, Kingo
Azuma, Etsuo Fujiwara, Mitsuyasu Yatsuzuka, “Profile of
implanted nitrogen ions in Al alloy for mold materials,” Surface
and Coatings Technology 136 _2001. 223-225.
[53]Chen, C.-C. A, Ming-Hui Fang , C.Z. Feng,I-Peng Yao,
Yung-Chang Hung, Kun-Cheng Tsai, “Analysis on Polishing
Properties of CMP Pads”, Proc. of the International Conference
168on Planarization / Polishing Technology 2008, Hsinchu,
Taiwan,November 11-13, 2008.
[54]潘錦昌, 低溫離子束沈積含氮類鑽碳之微-奈米機械、材料性質
及磨潤性能 之研究, 國立成功大學, 碩士論文, (2002)
[55]I. N. Sneddon, Int.J. Engng Sci.,Vol.3(1965), pp.47.
[56]Gordon Davies, “Properties and Growth of Diamond,”INSPEC, the
Institution of Electrical Engineers, London, United Kindom. (1994).
[57]G.. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the Generality of
the Relationship Among Contact Stiffness, Contact Area, and Elastic
Modulus During Indentation,”J. Mater. Res., Vol.7(1992), pp.613-617.
[58]R. B. King, “Elastic Analysis of Some Punch Problems for A
layered Medium,”Int. J. Solids Structure, Vol.23,
No.12(1987),pp.1657-1664
[59]W. C. Oliver, “An improved Technique for Determining Hardness
and Elastic Modulus Using Load and Displacement Sensing Indentation
Experiments,”J. Mater. Res. , Vol.7, No.6,(1992), pp.1564-1583.
[60]J. B. Pethica, R. Hutchings and W. C. Oliver, Phil. Mag. A,
Vol.48(1983), pp.593.

QR CODE