簡易檢索 / 詳目顯示

研究生: 張克銘
Ke-Ming Chang
論文名稱: 質子交換膜燃料電池複合材料雙極板之薄殼射出及性質研究
Study on Thin Wall Injection Molding Formability and Property of Graphite-Polymer Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell
指導教授: 許覺良
Chung-Liang Hsu
黃佑民
You-Min Huang
口試委員: 林榮慶
Zone-Ching Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 70
中文關鍵詞: 薄殼射出質子交換膜雙極板
外文關鍵詞: Thin wall injection molding, Bipolar plate, PEMFC
相關次數: 點閱:495下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了使質子交換膜燃料電池能夠商業化,大量生產之技術開發是目前有關燃料電池開發之最重要目標之一。因此,現今質子交換膜燃料電池於降低成本、提高生產量、及提高品質方面之課題皆是目前研究之重點。本論文以低密度聚乙稀(Low Density Polyethylene)和石墨高分子聚合材料(Graphite-polymer composite) 為射出成形雙極板的材料,並藉此研究其成形性、射出參數和翹曲值 (Warpage)。此外,本論文之實驗分析係採用田口法,實驗用材料係以低密度聚乙稀和石墨粉末(直徑2-10 um)以20%比例混合成石墨高分子聚合材料藉以使其具有導電性,而本實驗中的雙極板厚度為0.6 mm,長度與厚度的比值為141.42。
由實驗結果得知石墨高分子聚合材料需要較大的射出壓力與融料溫度才能得到完整的成品,並且較高的射出壓力與射出速度能夠改善翹曲值並得到較穩定的翹曲值。


For commercializing of the proton exchange membrane fuel cells (PEMFCs), the mass production technique is one of the most important aims for industry. Specially, for the important component of bipolar plates in PEMFC, it has been focused on reducing the cost, improving the productivity, and enhancing the quality. In this research, the injection molding with the material of the low density polyethylene (LDPE) and graphite-polymer composite were be investigated to determine the formability and the parameters of injection molding.
Based on the minimum warpage of bipolar plate, the Taguchi method was adopted to select appropriate factors that will influence the result of injection molding. From the results of experiments, we knew that the injection pressure, melt temperature, packing pressure, and injection speed are the most important factors, which will affect the molding quality; also a series of parameters was formed for bipolar plate injection molding process.

中文摘要 …...........Ⅰ Abstract…………………………………………………………………II Acknowledgement …….III Contents ……...IV List of Pictures and Tables ……...VI 1. Introduction 1 1-1 Foreword 1 1-2 Motive of Research 1 1-3 Objective of Research 2 1-4 Organization of Research 3 2. Literature Review 5 2-1 Application of PEMFC 5 2-2 Types of Fuel Cell 5 2-3 Review of Bipolar Plates 8 3. Research Method 10 3-1 Configuration and Function in PEMFC 10 3-1-1 Configuration of PEMFC 10 3-1-2 The Component of PEMFC 11 3-2 Experimental Design of Taguchi Method 14 3-2-1 Taguchi Method 14 3-2-2 Procedure of The Design of Experiment 14 3-2-3 Estimation of Characteristic Value in S/N Ratio 15 3-2-3-1 S/N Ratio of Smaller-The-Better Type 16 3-2-3-2 S/N Ratio of Large-The-Better Type 16 3-2-3-3 S/N Ratio of Nominal-The-Best Type 17 3-2-4 Disposition of Experimental Factors 18 3-3 Bipolar Plate Manufacturing 18 3-3-1 Material in Bipolar Plate 18 3-3-2 Processing Window Experiment 19 3-3-3 Disposition of the Experimental Bipolar Plates 20 3-3-4 Warpage Measuring of Bipolar Plate 20 3-3-5 Microstructure of Bipolar Plates in Optical Microscope 21 4. Experimental Analysis 28 4-1 Experimental Procedures 28 4-2 Thin wall Injection Molding 28 4-3 Material and Fabrication 29 4-4 Processing Window of Injection molding 30 4-5 Identify control factors 32 4-6 Form Orthogonal Arrays 32 4-6-1 Optimal Parameters for LDPE and Composite 34 4-7 Experimental Analysis to Determine Injection Molding Parameters 34 4-7-1 The results of LDPE for Different Parameters 34 4-7-2 The results of Composite for Different Parameters 36 5. Conclusion and Suggestion 53 5-1 Conclusion 53 5-2 Suggestion 54 Reference 55 Appendix 57 Introduction of Author 62 List of Figures and Tables Figure 1-1 The water is separated into hydrogen and oxygen by the passage of an electric current, and then the oxygen and hydrogen are recombining 4 Figure 3-1 The configuration of the PEMFC 22 Figure 3-2 The operation of the PEMFC. 22 Figure 3-3 The schema of the fuel cell stack 23 Figure 3-4 The material of graphite-polymer composite in bipolar plates 23 Figure 3-5 The processing window 24 Figure 3-6 The path of measuring 24 Figure 3-7 The plate of steel for measuring the part 25 Table 3-1 The property of low density polyethylene 25 Table 3-2 The orthogonal arrays L9 26 Table 3-3 The experimental levels and factors in the graphite-polymer composite. 27 Table 3-4 The experimental levels and factors in the LDPE. 27 Figure 4-1 The injection molding. 38 Figure 4-2 The processing window of the composite and the polyethylene. 38 Figure 4-3 The picture of bipolar plate. 39 Figure 4-4 The microstructure of OM for composite (20X). 39 The Figure 4-5 The Three-Dimensional Laser Scanner. 40 Table 4-1 The experimental levels and factors in the graphite-polymer composite 40 Table 4-2 The experimental levels and factors in the LDPE 41 Table 4-3 The orthogonal arrays L9 41 Table 4-4 The orthogonal array with three levels and results of the experiment for graphite-polymer composite material 42 Table 4-5 The orthogonal array with three levels and results of the experiment for low density polyethylene 42 Table 4-6 The response to S/N ratio for graphite-polymer composite material. 43 Table 4-7 The response to S/N ratio for low density polyethylene. 43 Figure 4-6 The response to factor of S/N ratio for composite. 43 Figure 4-7 The response to factor of S/N ratio for LDPE. 44 Table 4-8 The optimal factors for graphite-polymer composite material 44 Table 4-9 The optimal factors for low density polyethylene 44 The Table 4-10 The value of warpage in the different melt temperatures for low density polyethylene 45 The Figure 4-8 The value of warpage in the different melt temperatures for low density polyethylene. 45 The Table 4-11 The value of warpage in the different mold temperatures for low density polyethylene. 46 The Figure 4-9 The value of warpage in the different mold temperatures for low density polytheylene. 46 The Table 4-12 The value of warpage in the different injection speeds for low density polyethylene. 47 The Figure 4-10 The value of warpage in the different injection speeds for low density polyethylene. 47 The Table 4-13 The value of warpage in the different packing pressures for low density polyethylene. 48 The Figure 4-11 The value of warpage in the different packing pressures for low density polyethylene. 48 The Table 4-14 The value of warpage in the different melt temperatures for graphite-polymer composite. 49 The Figure 4-12 The value of warpage in the different melt temperatures for graphite-polymer composite. 49 The Table 4-15 The value of warpage in the different mold temperatures for graphite-polymer composite. 50 The Figure 4-13 The value of warpage in the different mold temperatures for graphite-polymer composite. 50 The Table 4-16 The value of warpage in the different injection speeds for graphite-polymer composite. 51 The Figure 4-14 The value of warpage in the different injection speeds for graphite-polymer composite. 51 The Table 4-17 The value of warpage in the different packing pressures for graphite-polymer composite. 52 The Figure 4-15 The value of warpage in the different packing pressures for graphite-polymer composite 52

1. 林昇佃, 余子隆, 張幼珍, 翁芳柏, 李碩仁, 林育才, 吳和生, 魏榮宗, 林修正, 賴子珍, 曾盛恕, 詹世弘, “燃料電池:新世紀能源”, (2004), 6-2.
2. Vielstich, Wolf, Lamm, Arnold, Gasteiger, Hubert A, Handbook of fuel cells: fundamentals technology and applications, Wiley, 2003.
3. L.T. Manzione (Ed), Application of Computer Aided Engineering in Injection Molding, Hanser, New York, 1987
4. Ming-Chih Huang, Ching-Chin Tai, The effective factors in the warpage problem of an injection-molded part with a thin shell feature, Journal of Materials Processing Technology, 110 (2001) 1-9.
5. Mukesh K. , Bisaria, “Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions” WO00/44005, 2000.
6. Zafar, NARASINHAM, Dave, “Nanocomposite for fuel cell bipolar plates”, WO01/89013A2,2001
7. Man Wu and Leon L. Shaw, On the improved properties of injection-molded carbon nanotube-filled PET/PVDF blends, Journal of Sources 136 (2004) 37-44.
8. F. N. Buchi and M. Ruge, PSI Sci. Rep., 5, 84 (2000)
9. J. Larmine and A. Dicks, Fuel Cell Systems Explained, Jphn Wiley and Sons, New York, 2001
10.Genichi Taguchi, Yoshiko Yokoyama, Yuin Mu, Taguchi Methods Design of Experiments, ASI Press, 2000.
11.Genichi Taguchi, William Y. Fowlkes, Clyde M. Creveling, Addsion Wesley, 2001.
12. kudlik, N. “Thin wall Technique”, Injection Molding, vol.89 (1999).
13. F.N. Buchi, M. Ruge, Bipolar elements for PE fuel cell stack based on the mold to size process of carbon/polymer mixtures, in: processing of the First European PEFC Forum, 2001.

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE