簡易檢索 / 詳目顯示

研究生: 王維庸
Wei-Yung Wang
論文名稱: CMOS類比/數位式脈波寬度控制迴路設計與實作
Design and Implementation of CMOS Analog/Digital Pulsewidth Control Loop
指導教授: 楊湰頡
Rong-Jyi Yang
口試委員: 姚嘉瑜
Chia-Yu Yao
張湘輝
Hsiang-Hui Chang
韓松融
Sung-Rung Han
莊基男
Chi-Nan Chuang
陳超群
Chao-Chyun Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 脈波寬度控制迴路延遲鎖定迴路時脈產生器責任週期
外文關鍵詞: pulsewidth control loop, delay locked loop, clock generator, duty cycle
相關次數: 點閱:231下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著CMOS製程的進步,電路系統朝著高度整合與高速的方向發展,大部份的數位及混合訊號系統中,使用大量的時脈訊號來控制電路,因此,如何維持時脈訊號頻率、相位和責任週期的準確度,成為相當重要的課題。在頻率和相位的校正上,鎖相迴路與延遲鎖定迴路已經廣泛的被使用,而對於能夠調整責任週期的脈波寬度控制迴路,則是本論文討論的主題。
    論文中首先對過去傳統式的延遲鎖定迴路與脈波寬度控制迴路進行介紹和分析,接著再把兩迴路當成主體,分別以類比和數位的方式,以0.18μm CMOS製程實作出兩種具有相位同步和責任週期調整能力的時脈產生器。
    類比系統的部份,將過去被提出的單路脈波寬度控制迴路簡化為一階的系統,並維持與延遲鎖定迴路共同運作,達成目標功能。在迴路分析上,主要針對變形後的單路脈波寬度控制迴路建立模型,再以晶片實際量測的結果,來驗證模型的正確性。
    最後,在一個全數位的系統上,利用特殊的運算選擇機制,將可變長度二位元搜索演算法延遲鎖定迴路,加入責任週期控制的功能,並修正系統中延遲線的架構來增加輸出時脈波寬的精確度,當然,系統中仍保留了相位同步、抗諧波鎖定和閉迴路的特性。


    With the progress of the CMOS technologies. Circuit systems develop toward high speed and highly integrated. Most digital and mixed-signal circuits use a lot of clock signals to control a periodic notification at the requested time. Therefore, to keep the accuracies on frequency, phase and duty-cycle of clock signals is very important. For the issues on frequency and phase correction, phase locked loops (PLLs) and delay locked loops (DLLs) are widely used. Here we focus on the pulsewidth control loop (PWCL), which can adjust the duty cycle of the clock.
    At first we will introduce the conventional delay-locked loop and pulsewidth control loop. By taking these two circuit system as the main body, two kinds of synchronous clock generator with adjustable duty cycles are implemented in the 0.18μm CMOS process.
    In analog design, we simplified the single-path pulsewidth control loop to a first-order system and also working with a delay-locked loop to achieve the goal functions. For loop analysis, we built the mathematical model of the simplified single-path pulsewith control loop. Then we will verify the correctness of the model with experimental results.
    Finally, we added a special operation circuit which provides the duty cycle adjustment function into all-digital variable successive approximation register delay-locked loop (VSAR DLL). In order to enhance the accuracy of the duty cycle of output clock, we modified the architecture of delay line in the system. Of course, the system properties of synchronous, harmonic-free and closed-loop operation are maintained.

    目錄 VII 圖目錄 IX 表目錄 XII 第一章 簡介 1 1.1動機及目的 1 1.2論文概要 2 第二章 延遲鎖定迴路與脈波寬度控制迴路基本原理 3 2.1 延遲鎖定迴路 3 2.1.1 類比式延遲鎖定迴路 3 2.1.2 數位式延遲鎖定迴路 9 2.2 脈波寬度控制迴路 11 2.2.1 傳統式脈波寬度控制迴路 11 2.2.2 利用SR正反器與延遲線作為控制級之脈波寬度控制迴路 14 2.2.3 循環式脈波寬度控制迴路 15 第三章 內建延遲鎖定迴路之單路脈波寬度控制迴路分析與設計 17 3.1 背景 17 3.2 內建延遲鎖定迴路之單路脈波寬度控制迴路 18 3.2.1 控制級 20 3.2.2 壓控延遲線 21 3.2.3 切換式充電泵 22 3.2.4 相位偵測器 24 3.2.5 充電泵 25 3.2.6 電壓對電壓非線性轉換電路 26 3.3 單路脈波寬度控制迴路分析 28 3.4 電路模擬 30 3.5 量測結果 32 3.6 結論 38 第四章 使用可變長度二位元搜索演算法延遲鎖定迴路之全數位脈波寬度控制迴路 39 4.1 背景 39 4.2 系統架構 42 4.2.1 可變長度二位元演算法控制器 44 4.2.2 數位控制延遲線 46 4.2.3 數位控制延遲線Dummy路徑電路 49 4.2.4 數位碼運算選擇單元 51 4.2.5 邊緣整合器 51 4.3 電路模擬 52 4.4 晶片實作與量測考量 56 4.5 結論 58 第五章 總結與未來研究方向 59 5.1 總結 59 5.2 未來研究方向 60 參考資料 61

    [1]F. M. Gardner, “Charge-pump phase-lock loops,” IEEE Trans. on Comm., vol. 28, pp.1849-1858, Nov. 1980.
    [2]R. E. Best, Phase-locked loops design, simulation, and applications, fifth edition, New York: McGraw-Hill, 2003.
    [3]J.-W. Lin, Design and Realization of Analog Delay-locked Loops, MS thesis, Dept. of Electrical Engineering, National Taiwan University, June 2001
    [4]H.-H. Chang, Design and Application of CMOS Digital/Analog Delay-Locked Loops, Ph.D. dissertation, Graduate Institute of Electronics Engineering, National Taiwan University, July 2004.
    [5]Y. Moon, J. Choi, K. Lee, D. K. Jeong, and M. K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,” IEEE J. Solid-State Circuits, vol.35, pp. 377-384, Mar. 2000.
    [6]F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35,pp. 134-141, Feb. 2000.
    [7]B. J. Patella, A. Prodic, A. Zirger and D. Maksimovic, “High-frequency digital PWM controller IC for DC-DC converters,” IEEE Trans. Power Electronics, vol.18, no.1, pp.438-446, Jan. 2003.
    [8]S.-R. Han and S.-I. Liu, “A single-path pulsewidth control loop with a built-in delay-locked loop,” IEEE J. Solid-State Circuits, vol.40, pp. 1130-1135, May 2005.
    [9]R.-J. Yang and S.-I. Liu, “A 40~550MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuit, Vol.42, pp.361-373, Feb. 2007.
    [10]Y. Okajima, M. Taguchi, M. Yanagawa, K. Nishimura, and O. Hamada, “Digital delay locked loop and design technique for high-speed synchronous interface,” IEICE Trans. Electron., vol.E79-C, pp.798-807, June 1996.
    [11]J.-U. Wang, The Design and Realization of Clock Synchronizer for high speed digital systems, MS thesis, Dept. of Electrical Engineering, National Taiwan University, June 1998.
    [12]H.-H. Chang and S.-I. Liu, “A wide-range and fast-locking all-digital cycle-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol.40, pp. 661-670, Mar. 2005.
    [13]J.-S. Liu, Design and Implementation of All-Digital Pulse-width Control Loop, MS thesis, Dept. of Electronics Engineering, Chang Gung University, July 2009.
    [14]J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol.31, pp.1723-1732, Nov. 1996.
    [15]S.-R. Han and S.-I. Liu, “A 500MHz~1.25GHz fast-locking pulsewidth control loop with presettable duty cycle,” IEEE J. Solid-State Circuits, vol.39, pp. 463-468, Mar. 2004.
    [16]W.-H Chen, Design of CMOS Serial Links Using 4-PWM and 4-PAM Techniques, MS thesis, Dept. of Electrical Engineering, National Taiwan University, 2000.
    [17]C.-N Chuang and S.-I Liu, “A 20-MHz to 3-GHz Wide-Range Multiphase Delay-Locked Loop,” IEEE Transactions on Circuits and Systems-II, vol.56, Nov. 2009.
    [18]A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electronics Letters, vol.32, no.12, pp.1055-1057, June 1996.
    [19]G.-K Dehng, J.-M. Hsu, C.-Y Yang, and S.-I. Liu, “Clock-deskew buffer using SAR-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol.35, pp. 1128-1136, Aug. 2000.
    [20]G.-K. Dehng, J.-W. Lin, and S.-I. Liu, “A fast-lock mixed-mode DLL using a 2-b SAR algorithm,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1464–1471, Oct. 2001.
    [21]Y.-M Wang, C.-F Hu, Y.-J Chen and J.-S Wang, “An all-digital pulsewidth control loop,” IEEE Int. Symp. Circuits and Systems, vol.2, pp.1258-1261, 2005.

    無法下載圖示 全文公開日期 2015/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE