簡易檢索 / 詳目顯示

研究生: 陳彥宏
Yen-Hung Chen
論文名稱: 氧化亞銅/二氧化鈦進行可見光催化還原反應之研究
Cu2O/ TiO2 composite powder for photocatalytic reduction reaction under visible light
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau Kuo
吳昌謀
Chang-Mou Wu
薛人愷
Ren-Kae Shiue
林惠娟
Huey-Jiuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 光觸媒異質接面光觸媒氧化亞銅光催化還原反應
外文關鍵詞: photocatalyst, heterojunction photocatalyst, Cu2O, photocatalytic reduction.
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在此研究中,製備出p-氧化亞銅/ n-二氧化鈦異質接面光觸媒,並將其成功應用於光催化還原反應,本研究利用還原六價鉻來測試光觸媒光催化還原的能力。
本研究使用n型半導體-二氧化鈦為載體,在外面成長氧化亞銅,接著我們嘗試使用各種方式去提升其光催化還原能力,包含:調整複合重量百分比、改變製程溫度以及加入第三成份等等,去提升光觸媒光催化還原能力。後續利用XRD、SEM、TEM、XPS以及UV-Vis去探討光觸媒本身材料的各種性質。
最後我們希望能把綜合以上擁有最佳光催化還原能力的光觸媒粉體應用於光催化水裂解產氫領域上。
研究發現,使用20 mg室溫下製備的30 wt.% Cu2O/ TiO2經過90分鐘可見光的照射下,可以將10 ppm K2Cr2O7 100 mL還原效果達到95%以上,以後將會使用此一材料進行光催化裂解水產氫實驗。


In this research, we prepared the heterojunction p-Cu2O/ n-TiO2 composite photocatalyst and successfully used it on photocatalytic reduction that using reduction Cr6+ to test its photocatalytic reduction ability.
This research used n-type TiO2 as a substrate, then coated Cu2O on TiO2. In order to increase its photocatalytic reduction ability, we tried to adjust Cu2O wt.% of Cu2O/ TiO2, change the temperature of preparation and coat with the third kind of nanomaterials and so on. In addition we analyzed its characteristics by XRD, SEM, TEM, XPS and UV-Vis.
Finally, we chose the photocatalyst with the best ability in Cr6+ photocatalytic reduction for producing hydrogen by photocatalytic water splitting.
In this study, we found using room temperature-30 wt.% Cu2O of Cu2O/ TiO2 20 mg can reduce 10 ppm 100 mL K2Cr2O7(aq) under visible light during 90 min.

中文摘要I AbstractII 致謝III 目錄IV 圖目錄VI 表目錄XIII 第一章 緒論- 1 - 1-1前言- 1 - 1-2研究動機與目的- 1 - 第二章 基礎理論與文獻回顧- 3 - 2-1半導體- 3 - 2-1.1半導體簡介- 3 - 2-1.2 p-n 接面(junction)[4]- 5 - 2-2光觸媒催化的簡介- 6 - 2-2.1光觸媒的催化原理概述- 6 - 2-2.2光觸媒的催化反應介紹- 7 - 2-2.3光觸媒材料介紹- 30 - 第三章 實驗方法與步驟- 43 - 3-1實驗藥品- 43 - 3-2實驗設備- 44 - 3-3分析儀器- 45 - 3-4實驗流程- 47 - 3-4.1光觸媒材料之製備- 48 - 3-4.2光催化降解染料實驗- 51 - 3-4.3光催化還原六價鉻實驗- 52 - 3-4.4光催化分解水產氫實驗- 53 - 第四章 結果與討論- 55 - 4-1染料降解- 55 - 4-2還原水溶液中的六價鉻- 57 - 4-3氧化亞銅/ 二氧化鈦光觸媒組成比例最適化與特性分析- 63 - 4-4水裂解產氫- 76 - 4-4.1檢量線之製作- 76 - 第五章 結論- 78 - 參考文獻- 80 -

1.A. L. Linsebigler, G. Lu, and J. T. Yates Jr, Chemical reviews, 95, 735 (1995)
2.NREL, http://www.nrel.gov/, (N/A)
3.M. Grätzel, Nature, 414, 338 (2001)
4.王廣發, 半導體元件物理基礎, (1996)
5.R. M. Powell, R. W. Puls, D. Blowes, R. Gillham, and D. Schultz, NASA, (1998)
6.Y. C. Zhang, L. Yao, G. Zhang, D. D. Dionysiou, J. Li, and X. Du, Applied Catalysis B: Environmental, 144, 730 (2014)
7.C. Mondal, M. Ganguly, J. Pal, A. Roy, J. Jana, and T. Pal, Langmuir, 30, 4157 (2014)
8.Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, and S.-F. Yin, Chemical Engineering Journal, 255, 394 (2014)
9.D. Ke, T. Peng, L. Ma, P. Cai, and P. Jiang, Applied Catalysis A: General, 350, 111 (2008)
10.X. Liu, L. Pan, T. Lv, G. Zhu, Z. Sun, and C. Sun, Chemical Communications, 47, 11984 (2011)
11.G. Chen, M. Sun, Q. Wei, Z. Ma, and B. Du, Applied Catalysis B: Environmental, 125, 282 (2012)
12.A. Kudo and Y. Miseki, Chemical Society Reviews, 38, 253 (2009)
13.A. Fujishima and K. Honda, Nature, 238, 37 (1972)
14.K. Maeda and K. Domen, Chemistry of Materials, 22, 612 (2009)
15.J.-J. Chen, J. C. Wu, P. C. Wu, and D. P. Tsai, The Journal of Physical Chemistry C, 115, 210 (2010)
16.K. Lalitha, G. Sadanandam, V. D. Kumari, M. Subrahmanyam, B. Sreedhar, and N. Y. Hebalkar, The Journal of Physical Chemistry C, 114, 22181 (2010)
17.J. F. Moulder, J. Chastain, and R. C. King, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. (Perkin-Elmer Eden Prairie, MN, 1992).
18.J. S. Jang, U. A. Joshi, and J. S. Lee, The Journal of Physical Chemistry C, 111, 13280 (2007)
19.Y. Chen, L. Wang, G. M. Lu, X. Yao, and L. Guo, Journal of Materials Chemistry, 21, 5134 (2011)
20.S.-D. Mo and W. Ching, Physical Review B, 51, 13023 (1995)
21.U. Diebold, Surface science reports, 48, 53 (2003)
22.A. Primo, A. Corma, and H. García, Physical Chemistry Chemical Physics, 13, 886 (2011)
23.H.-t. Chen, (2009)
24.J. Zuo, M. Kim, M. O'Keeffe, and J. Spence, Nature, 401, 49 (1999)
25.Z.-Z. Chen, E.-W. Shi, Y.-Q. Zheng, W.-J. Li, B. Xiao, and J.-Y. Zhuang, Journal of Crystal Growth, 249, 294 (2003)
26.C. Fernando, L. De Silva, R. Mehra, and K. Takahashi, Semiconductor science and technology, 16, 433 (2001)
27.K. Chen, C. Sun, S. Song, and D. Xue, CrystEngComm, 16, 5257 (2014)
28.J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang, and L. Guo, Applied Catalysis B: Environmental, 152, 335 (2014)
29.H. Gao, J. Zhang, R. Wang, and M. Wang, Applied Catalysis B: Environmental, 172, 1 (2015)
30.C.-H. Kuo, T.-E. Hua, and M. H. Huang, Journal of the American Chemical Society, 131, 17871 (2009)
31.S. Kakuta and T. Abe, ACS applied materials & interfaces, 1, 2707 (2009)
32.L. Zhang, D. A. Blom, and H. Wang, Chemistry of Materials, 23, 4587 (2011)
33.D. Reyes-Coronado, G. Rodriguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, and G. Oskam, Nanotechnology, 19, 145605 (2008)
34.Z. Zhuang, Q. Peng, B. Zhang, and Y. Li, Journal of the American Chemical Society, 130, 10482 (2008)
35.J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan, Chemistry of Materials, 14, 4172 (2002)
36.J. C. Park, J. Kim, H. Kwon, and H. Song, Adv. Mater, 21, 803 (2009)
37.I. K. Konstantinou and T. A. Albanis, Applied Catalysis B: Environmental, 49, 1 (2004)
38.A. Kudo, H. Kato, and I. Tsuji, Chemistry Letters, 33, 1534 (2004)
39.S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee, Energy & Environmental Science, 4, 1781 (2011)
40.S. Poulston, P. Parlett, P. Stone, and M. Bowker, Surface and Interface Analysis, 24, 811 (1996)
41.J. Yang, D. Wang, H. Han, and C. Li, Accounts of chemical research, 46, 1900 (2013)
42.K. Iizuka, T. Wato, Y. Miseki, K. Saito, and A. Kudo, Journal of the American Chemical Society, 133, 20863 (2011)
43.K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, and T. Setoyama, Angewandte Chemie, 122, 4190 (2010)
44.H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, and C. Li, Journal of Catalysis, 266, 165 (2009)
45.G. R. Rao and H. R. Sahu, Journal of Chemical Sciences, 113, 651 (2001)
46.C. Hu, Z. Zhang, H. Liu, P. Gao, and Z. L. Wang, Nanotechnology, 17, 5983 (2006)

QR CODE