簡易檢索 / 詳目顯示

研究生: 張瑋如
Wei-Ru Chang
論文名稱: 室內空間一氧化碳擴散現象之CFD研究
CFD study on the phenomena of carbon monoxide dispersion in interior spaces
指導教授: 鄭政利
Cheng-Li Cheng
口試委員: 江哲銘
none
何明錦
none
江維華
Wei-Hwa Chiang
林慶元
Ching-Yuan Lin
林怡均
Yi-Jiun Lin
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 一氧化碳擴散熱水器
外文關鍵詞: carbon monoxide, transport, water hrater
相關次數: 點閱:498下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

有鑑於台灣地區陽台家用瓦斯熱水器之燃燒不完全,導致一氧化碳產生並擴散至相鄰室內空間造成一氧化碳中毒事件的經常發生,然相關研究卻相當缺乏之現況,本研究運用計算流體力學方法進行有系統之研究。本研究建立典型台灣住家陽台-室內空間幾何模型幾何模型、一氧化碳不完全燃燒模型,以及一氧化碳三維擴散之數值模式。針對室內窗開啟關閉與通風速度變化之可能情境進行不同通風狀況,共1 4 種案例之一氧化碳濃度分佈
與速度場之分析。主要研究發現包括: ( 1 ) 通氣速度變化明顯影響陽台與室內房一氧化碳濃度分佈狀況與速度場模式。( 2 ) 計算模擬結果顯示V = 3 . 0 × 1 0 - 4 m / s e c 為關鍵通氣速度,當通氣速度低於此關鍵通氣速度時,氣流之運動主要為擴散作用,此時室內門關閉與否對於室內房一氧化碳濃度分布之影響不大。( 3 ) 當通氣速度高於關鍵通氣速度( V = 3 . 0 × 1 0 - 4 m / s e c ) 時,室內門開啟時室內房的一氧化碳濃度將遠低於室內門關閉的狀況。此乃因為新鮮空氣經由開啟之室內門被牽引進入室內房所導致之結果。本研究在台灣乃屬於創新研究,期望可提供作為國內災害防治、通風設計以及空氣污染防治等相關研究的基礎,進而衍伸出相關後續之系統研究,成為住宅通風實務設計之參考依據,以避免一氧化碳中毒事故之一再發生,並維護全民生命財產的安全。


This paper has presented a computational analysis of carbon monoxide (CO) concentration inside a typical enclosed room of a residential building in Taiwan. CO is produced from a house-used natural gas water heater installed in the balcony. It is then diffused into the adjacent bedroom, which often causes serious poisoning accidences. A general-purpose computational fluid dynamics (CFD) code is employed to predict the CO concentration and airflow fields inside a three-dimensional (3D) modeled house. The variation of CO concentration was simulated under different scenarios of vent air flow rates and exit openings. It was found that under the ventilation conditions of V>0.0003 m/sec, the levels of CO concentration in the bedroom is significantly decreased due to the entrainment of fresh air into the bedroom from the inside door. The present results could be used as a base for ventilation design for enclosed rooms, aiming at a proper ventilation system selection for avoiding the CO poisoning.

博士學位論文指導教授推薦書......................................................................... I 博士學位考試委員會審定書............................................................................II 中文摘要.......................................................................................................... III 英文摘要.......................................................................................................... IV 誌謝....................................................................................................................V 目次.................................................................................................................. VI 表次................................................................................................................VIII 圖次.................................................................................................................. IX 1. 緒論............................................................................................................... 1 1.1. 研究動機................................................................................................ 1 1.2. 研究目的.................................................................................................2 1.3. 研究架構.................................................................................................3 1.3.1. 研究方法..................................................................................... 3 1.3.2. 研究步驟......................................................................................4 2. 文獻回顧...................................................................................................... 9 2.1. 一氧化碳之相關研究........................................................................... 9 2.1.1. 一氧化碳之特性......................................................................... 9 2.1.2. 一氧化碳之產生........................................................................11 2.1.3. 一氧化碳之擴散....................................................................... 12 2.2. 計算流體力學之相關理論.................................................................. 14 2.2.1. 流體力學研究方法與求解過程................................................... 14 2.2.2. 流體物理模型與統御方程式................................................... 17 2.2.3. 網格生成方法................................................................................ 20 2.2.4. 數值方法......................................................................................... 22 2.2.5. 邊界條件......................................................................................... 25 2.2.6. 計算流體力學之驗證.................................................................... 26 3. 數值模型.................................................................................................... 29 3.1. 典型台灣住家陽台-室內空間幾何模型............................................. 29 3.2. 熱水器一氧化碳產生模型...................................................................... 32 3.3. 一氧化碳擴散模型................................................................................... 33 3.4. 計算範圍網格建構................................................................................... 34 3.5. 邊界條件設定 ......................................................................................... 35 3.6. 數值方法擬定........................................................................................... 36 4. 結果與討論................................................................................................ 37 4.1. 模擬結果驗證........................................................................................... 37 4.2. 一氧化碳濃度分布模式...........................................................................39 4.3. 速度場模式................................................................................................ 41 5. 結論與建議................................................................................................ 59 引用文獻......................................................................................................... 63 相關文獻......................................................................................................... 71 附錄A:翻譯對照表..................................................................................... 73 附錄B:符號對照表..................................................................................... 77 附錄C:CFD相關已發表論文.................................................................... 79

[1] 黃鈺雲,「正視居家生活中的隱形殺手—瓦斯與一氧化碳中毒須知」,
消防與防災科技雜誌,期12,第112-115頁 (2004)。
[2] U.S. Centers for Disease Control and Prevention, Study: Unintentional
Non-Fire-Related Carbon Monoxide Exposures – United States, 2001-2003,
CDC-Media Relations-Press Release-January 20, 2005.
[3] 內政部消防署,「防範一氧化碳中毒 注意居家環境通風」,內政部消防
署消防影音新聞台。
http://enews.nfa.gov.tw/V4one-news.asp?NewsNo=5874。(2009/08/12瀏
覽)
[4] 內政部消防署,「寒流低溫期間 防範一氧化碳中毒」,內政部消防署消
防影音新聞台。http://enews.nfa.gov.tw/V4one-news.asp?NewsNo=8230。
(2009/08/12瀏覽)
[5] 張建興,「小心提防一氧化碳的毒手」,內政部消防署消防影音新聞台
(2008/2/14)。http://enews.nfa.gov.tw/one-news.asp?NewsNo=9921。
(2008/08/12瀏覽)
[6] 內政部消防署 ,「行政院災害防救委員會召開「提升燃氣安全管理(含
防範一氧化碳中毒措施)」研商會議」,內政部消防署消防影音新聞台。
http://enews.nfa.gov.tw/print-news.asp?newsNo=10111。(2009/08/12瀏覽)
[7] 全球新聞網,「竹縣一氧化碳中毒 兩死一重傷」,中廣新聞網。
http://news.sina.com/oth/bcc/301-102-101-102/2008-02-25/09572692201.h
tml。(2008/08/12瀏覽)
[8] 江哲銘、賴榮平,「辦公建築室內空氣品質與空調設備之診斷研究」,
內政部建築研究所研究報告,臺北,臺灣 (1998)。
[9] 黃倩芸、洪劍長、陳幸婷,「辦公建築室內裝修建材逸散物質對室內空
氣品質影響之調查研究」,內政部建築研究所內政部建築研究所研究報
告,臺北,臺灣 (1997)。
[10] Back, S.O., Kim, Y.S., Perry, R. ,”Indoor air quality in homes, offices and
restaurants in Korean urban areas-indoor/outdoor relationships”, Atmos.
Environ. 31(4): 529-544(1997).
[11] Cheong, K.W.D., Diunaedy, E., Poh, T.K., Tham, K.W., Sekhar, S.C., Wong,
N.H., Ullah, M.B., “Measurements and computations of contaminant’s
distribution in an office environment”, Building and Environment 38(2003)
135-145.
[12] Chiang, C.M., Lai, C.M., “A study on the comprehensive indicator of
indoor environment assessment for occupants’ health in Taiwan”, Building
and Environment 37(2002)387-392.
[13] Chung, K.C., Chiang, C.M., Wang, W.A., “Predicting contaminant particle
distributions to evaluate the environment of lavatories with floor exhaust
ventilation”,Building and Environment, Vol. 32, No. 2, pp.149-159(1997).
[14] Guo, H., Lee, S.C., Chan, L.Y., ”Indoor air quality investigation at
air-conditioned and non-air-conditioned markets in Hong Kong”, Sci.
Total Environ, 323: 87-98(2004).
[15] Hayashi, M., Enai, M., Hirokawa, Y., “Annual characteristics of ventilation
and indoor air quality in detached houses using a simulation method with
Japanese daily schedule model”, Building and Environment 36(2001)
721-731.
[16] Hayashi, M., Ishizu, Y., Kato, S., Muarkami, S., “CFD analysis on
characteristics of contaminated indoor air ventilation and its application in
the evaluation of the effects of contaminant inhalation by a human
occupant”, Building and Environment 37(2002) 219-230.
[17]Jones, A.P., “Indoor air quality and health”, Atmos. Environ. 33:
4535-4564(1999).
[18] Lee, S.C., Guo, H., Li, W.M., Chan, L.Y., ”Inter-comparison of air pollutant
concentrations in different indoor environments in Hong Kong”, Atmos
Environ.,36: 1929-1940(2002).
[19] Li, W.M., Lee, S.C., Chan, L.Y., “Indoor air quality at nine shopping malls
in Hong Kong”, Sci. Total Environ., 273: 27-40(2001).
[20] Zhao, B., Zhang, Y., Li, X., Yang, X., Huang, D., “Comparison of indoor
aerosol particle concentration and deposition in different ventilated rooms
by numerical method”, Building and Environment 39(2004)1-8.
[21] Chiang, C.M., Lai, C.M., Chou, P.C., Li, Y.Y.,“The influence of an
architectural design alternative(transoms) on indoor air environment in
conventional kitchens in Taiwan”, Building and Environemnt
35(2000)579-585.
[22] Chang, M.Y., Chow, W.K., “Car park ventilation system: performance
evaluation”, Building and Environment 39(2004) 635-643.
[23] Duci, A., Papakonstantinou, K., Chaloulakou, A., Markatos, N., ”
Numerical approach of carbon monoxide concentration dispersion in an
enclosed garage”, Building and Environment 39(2004) 1043-1048.
[24] Ho, J.C., Xue, H., Tay, K.L., “A field study on determination of carbon
monoxide level and thermal environment in an underground car park”,
Building and Environment 39(2004) 67-75.
[25] Papakonstantinou, K., Chaloulakou, A., Duci, A., Vlachakis, N., Markatos,
N.,” Air quality in an underground garage: computational and experimental
investigation of ventilation effectiveness”, Energy and Buildings, 35(2003)
933-940.
[26] Chan, L.Y., Zeng, L., Qin, Y., Lee, S.C., “CO concentration inside the cross
harbor tunnel in Hong Kong”, Environment International, Vol. 22, No. 4,
pp. 405-409(1996).
[27] Chow, W.K., Chan, M.Y., “Field measurement on transient carbon
monoxide levels in vehicular tunnels”, Building and Environment 38(2003)
227-236.
[28] Tsou, J.Y., “Strategy on applying computational fluid dynamic for building
performance evaluation”, Automation in Construction, 10(2001)327-335.
[29] ESI Group, Quick Start Guide, ESI CFD Inc.,2005.
[30] ESI Group CFD Portal。
http://www.esi-cfd.com/portal/component/option,com_rapidrecipe2/page,b
rowserecipes。(2009/08/12瀏覽)
[31] 林佳谷、陳叡瑜,「一氧化碳性格」,工業安全衛生月刊,215期:28-34
(2007/5)。
[32] 邱彥文、吳政龍、王建楠、蘇世斌,「淺談一氧化碳中毒」,基層醫學,
20:11, 302-307(2005/11)。
[33] 蔡維謀,「一氧化碳中毒情境及症狀介紹」,工業材料,期227,
65-67(2005/11)。
[34] 王賢和、林燈賦,一氧化碳中毒與高壓氧治療」,國防醫學,第三十卷
第五期(1989/5)。
[35] Kerr, J.A., “The Mechanism of Photochemical Smog Formation”, Science
171:1013(1971).
[36] Forbes, W.H., “The Rate of Carbon Monoxide Uptake by Normal Man”,
Am. J. Physiol, 102:393(1972) .
[37] National Fire Protection Association, SFPE Handbook of Fire Protection
Engineering(2008 Edition). Massachusetts, USA.
[38] Curphey, J.J., “Smoking and Blood CO level”, Lancet 2:687(1973).
[39] Goldsmith, J.R., “A. Hexter: Carbon Monoxide: Association of Community
Air Pollution with Mortality. Science 172:265(1971).
[40] Schulte, J.N., “Effect of Mild Carbon Monoxide Intoxication”, Arch.
Environ Health, 7:30(1963).
[41] 葉彩芳,「淺談一氧化碳中毒」,彰化秀傳高壓氧治療中心。
http://www.24drs.com/consumer/disease/O2/7.asp。(2009/08/12瀏覽)
[42] 阮祺文,「瓦斯中毒?一氧化碳中毒」,健康世界,206期:6-7(2003/2)。
[43] 湯大同,「到底是一氧化碳中毒還是瓦斯中毒?」,勞工安全衛生簡訊,
期17,13(1996/6)。
[44] Hademenos G., Schaum's Outline of Organic Chemistry(3th edition).
McGraw-Hill(1999). .ISBN: 007134165X.
[45] Bird R. B., Stewart W. E., Lightfoot E. N., Transport Phenomena(2nd
Edition). John Wiley & Sons(2002).
[46] Hsu H.W., Bird R.B., “Multicomponent Diffusion Problems.”, AIChE
J.,6,387-453(1998).
[47] ESI Group. CFD-ACE+ V2006 Modules Manual. ESI CFD Inc,
p.125(2005)
[48] Ariman, T., Turk, M.A., “Microcontinuum Fluid Mechanics- A Review.”,
Int. J. Eng. Science, Vol.11, pp.905-930(1973).
[49] Ariman, T., Turk, M.A., Sylvester, N.D., “Application of Microcontinuum
Fluid Mechanics”, Int. J. Eng. Science, Vol.12, pp.273-293(1973).
[50] Eringen, A., “Simple Microfluids”, Int. J. Eng. Science,
Vol.11,pp.205-217(1964).
[51] Gurtinm, M. E., An Introduction to Continuum Mechanics, Academic Press,
New York, p. 77(1981).
[52] Ethier, C.R., Steinman, D.A., "Exact fully 3D Navier–Stokes solutions for
benchmarking", International Journal for Numerical Methods in Fluids 19
(5): 369–375(1994). doi:10.1002/fld.1650190502
[53] McComb, W.D, Renormalization methods: A guide for beginners, Oxford
University Press, pp. 121–128(2008).ISBN 0199236526
[54] Wang, C.Y., "Exact solutions of the steady-state Navier–Stokes equations",
Annual Review of Fluid Mechanics 23: 159–177(1991),
doi:10.1146/annurev.fl.23.010191.001111
[55] Fox, R. W., McDonald, A. T., Pritchard P. J., Introduction to Fluid
Mechanics(6th ed), John Wiley and Sons, page 348(2003). ISBN 0 471
20231 2
[56] Rott, N., “Note on the history of the Reynolds number”, Annual Review of
Fluid Mechanics, Vol. 22, 1990, pp. 1–11.
[57] Taylor, G.I, "Stability of a Viscous Liquid contained between Two Rotating
Cylinders", Phil. Trans. Royal Society A223: 289–343 (1923).
doi:10.1098/rsta.1923.0008.
[58] Chien, K.Y., "Predictions of Channel and Boundary-Layer Flows with a
Low-Reynolds Number Turbulence Model", AIAA Journal, Vol. 20, No. 1,
pp. 33-38(1982).
[59] Launder, B. E., Sharma, B. I., "Application of the Energy-Dissipation
Model of Turbulence to the Calculation of Flow Near a Spinning Disc",
Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138(1974) .
[60] Nagano, Y., Tagawa, M, "An Improved k-epsilon Model for Boundary
Layer Flows", Journal of Fluids Engineering, Vol. 112, pp. 33-39(1990),.
[61] Rodi, W., Mansour, N. N., "Low Reynolds Number k-epsilon Modeling
with the Aid of Direct Simulation Data", Journal of Fluid Mechanics, Vol.
250, pp. 509-529(1993).
[62] Patel, V. C., Rodi, W., Scheuerer, G., "Turbulence Models for Near-Wall
and Low Reynolds Number Flows: A Review", AIAA Journal, Vol. 23, No.
9, pp. 1308-1319(1985).
[63] Moeng, C.H., “A Large-Eddy Simulation Model for the Study of Planetary
Boundary-Layer turbulence”, J. Atmos. Sci., 41, 2052-2062(1984).
[64] Moeng, C.H., Wyngaard, J.C., “ Spectral Analysis of Large-Eddy
Simulations of the Convective Boundary layer”, J. Atmos. Sci., 45,
3573-3587(1988).
[65] Moeng, C.H., Sullivan, P.P., “ Large Eddy Simulation”, Encyclopedia of
Atmospheric Sciences, 1140-1150(2002).
[66] Sullivan, P. P., McWilliams, J. C., Moeng, C.H., “ A grid nesting method
for large-eddy simulation of planetary boundary layer flows”,
Boundary-Layer Meteorology, 80, 167-202(1996).
[67] McGrory, W.D.,Walters, R.W., Lohner, R., “Three-dimensional spacemarching
algorithm on unstructured grids”, AIAA J. Vol.29, 1844(1991).
[68] Frey, Pascal Jean; George, Paul-Louis , Mesh Generation: Application to
Finite Elements, Hermes Science(2002). ISBN 9781903398005.
[69] Vilsmeier, R., Hanel, D., “Adaptive methods on unstructured grids for
Euler and Naver-Stokes equations”, Computer & fluids, Vol.22, 486(1993).
[70] Guibas, L., D. Knuth; M. Sharir., "Randomized incremental construction of
Delaunay and Voronoi diagrams", Algorithmica 7: 381–413(1992).
doi:10.1007/BF01758770.
[71] Herbert, E., Geometry and Topology for Mesh Generation. Cambridge
University Press, 2001. ISBN 9780521793094.
[72] Taylor, A.C., Walters, R.W., “An improved upwind finite volume relation
method for nigh speed viscous flows’, J. Comp. phy., Vol.99,
159-168(1992).
[73] Durbin PA, Medic G., Fluid Dynamics with a Computational Perspective,
Cambridge Univ Press(2007). ISBN 0521850177.
[74] Pan, D., Cheng, J.C., ‘Upwind finite-volume Navier-Stokes computations
on unstructured triangular meshes”, AIAA J., Vol.31,1618.(1993).
[75] Anderson, J. D., "Ludwig Prandtl's Boundary Layer", Physics Today,
December 2005.
[76] Beam, R.M., Warming, R.F., Yee, H.C., “Stability analysis of numerical
boundary conditions and implict different approximations for hyperbolic
equations”, J. Comp. Phy., Vol.48,200-222(1982).
[77] Hedstrom, G.W., “Nonreflecting boundary conditions for nonlinear
hyperbolic system”, J. Comp. Phy., Vol.30, 222-237(1979).
[78] Wesseling P., Principles of Computational Fluid Dynamics.
Springer-Verlag Berlin Heidelberg New York.(2000). ISBN: 3540678530.
[79] Tu, J., Yeoh, G.H., Liu, C., Computational Fluid Dynamics: A Practical
Approach. Butterworth-Heinemann(2007). ISBN:0750685638
[80] 張瑋如, 「陽台瓦斯熱水器導致鄰近室內空間一氧化碳擴散現象之
CFD研究」,第三屆國際環境災害及緊急應變技術研討會, 雲林. 2006。

QR CODE