簡易檢索 / 詳目顯示

研究生: 徐驊煒
Hua-Wei Hsu
論文名稱: 再生瀝青混凝土減碳效益之研究
The Study of Carbon Reduction Benefits of Recycled Asphalt Concrete
指導教授: 洪嫦闈
Cathy C.W. Hung
口試委員: 楊亦東
I-Tung Yang
廖敏志
Min-Chih Liao
林彥宇
Yen-Yul Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 119
中文關鍵詞: 再生瀝青混凝土減碳效益交通量生命週期評估疲勞壽命敏感性分析
外文關鍵詞: Recycled Asphalt Concrete, Carbon Reduction Benefits, Traffic Volume, Life Cycle Assessment, Fatigue Life, Sensitivity Analysis
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球暖化的加劇使得營造業之永續發展成為重大議題,其中包含再生材料之使用,再生瀝青混凝土便是利用再生材料製成,最常使用之再生材料為瀝青混凝土刨除料(RAP),多數研究認為再生瀝青混凝土在搖籃到大門階段與建造階段相較於新拌瀝青混凝土具有減碳效益,但若考量養護階段,因再生材料在耐久性上之差異,會使得養護次數有增加的可能,以長期而言,再生瀝青混凝土之使用不見得具有減碳效益,故本研究以0%、20%、30%、40% RAP進行減碳效益之探討,結合交通量ESAL與耐久性試驗數據進行養護次數計算,並以生命週期分析方法蒐集搖籃到大門階段之碳排量數據,而後分別在建造階段與養護階段搭配厚度進行單位面積之碳排量計算,再結合養護次數計算出分析年限20年內之碳排量總和,並以0% RAP為對照組,探討20%、30%、40% RAP在分析年限20年內之減碳效益。其次,為探討再生瀝青混凝土之可行性,本研究以0%、30% RAP之單價進行成本效益分析。依據結果發現,養護次數為影響再生瀝青混凝土減碳效益的主要因素,故以交通量年增率與疲勞壽命等兩項養護次數相關變數對碳排量進行敏感性分析,探討兩變數對減碳效益產生之影響程度。研究結果發現,在分析年限20年內再生瀝青混凝土之減碳效益依序為30% RAP>20% RAP>40% RAP,其中40% RAP不具有減碳效益,20% RAP與30% RAP則需在一定之交通量ESAL以下才具有減碳效益;在成本部分,再生瀝青混凝土在本研究考量範圍內最多可降低815NTD/m2之成本;敏感性分析部分,交通量年增率之降低會使得40% RAP在減碳效益上漸具優勢;在疲勞壽命提升範圍內,40% RAP皆不具有減碳效益,而20% RAP與30% RAP隨著疲勞壽命之提升,則可在本研究分析之交通量範圍內具有減碳效益。


    The exacerbation of global warming has accentuated the critical importance of sustainable development within the construction industry. This involves the utilization of recycled materials, particularly recycled asphalt concrete, primarily derived from recycled asphalt pavement (RAP). Numerous studies indicate that recycled asphalt concrete offers carbon reduction advantages when compared to new asphalt concrete in both cradle-to-gate and construction stages. Yet, the differences in durability of recycled materials may potentially increase the frequency of repavement in the rehabilitation stage. In the long run, the use of recycled asphalt concrete may not unequivocally translate into carbon reduction benefits.
    To address these concerns, this study examines the carbon reduction potential associated with varying percentages of RAP (0%, 20%, 30%, and 40%). By integrating traffic Equivalent Single Axle Load (ESAL) data and durability test data, the research calculates projected frequencies of rehabilitation. A life cycle analysis is employed to evaluate cradle-to-gate carbon dioxide equivalent missions per unit area in construction and rehabilitation stages (20-year period), accounting for pavement thickness variation and rehabilitation frequency. 0% RAP is used as a baseline for comparison in this study. Specifically, it investigates the carbon reduction benefits achievable with 20%, 30%, and 40% RAP incorporation within 20-year analysis duration. Additionally, a cost-effectiveness analysis is conducted, comparing the unit price associated with 0% and 30% RAP to assess the economic feasibility of recycled asphalt concrete.
    Based on the findings, rehabilitation frequency emerges as a crucial factor influencing the carbon reduction advantages of recycled asphalt concrete. A sensitivity analysis is then conducted on variables affecting rehabilitation frequency computations, such as annual growth rate of traffic and fatigue life, to assess the impact of alterations in these variables on carbon reduction benefits.
    The results reveal that over a 20-year analysis period, the carbon reduction benefits of recycled asphalt concrete follow this order: 30% RAP > 20% RAP > 40% RAP, with 40% RAP failing to demonstrate carbon reduction benefits. Both 20% RAP and 30% RAP manifest carbon reduction benefits only below a certain threshold of traffic ESAL. Regarding cost, recycled asphalt concrete can yield savings of up to 815 NTD/m2 within the study system boundary.
    In the sensitivity analysis, a decline in traffic annual growth rate favors 40% RAP in terms of carbon reduction benefits. However, within the range of fatigue life improvements, 40% RAP does not reveal carbon reduction benefits. Conversely, 20% RAP and 30% RAP exhibit carbon reduction benefits within the analyzed traffic range as fatigue life increases.

    第一章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究流程 第二章 文獻回顧 2.1 生命週期評估 2.1.1 生命週期評估定義與架構 2.1.2 再生瀝青混凝土之生命週期評估 2.2 國內之生命週期評估 2.2.1 碳足跡產品類別規則-基礎建設-道路 2.2.2 瀝青混凝土二氧化碳排放評估之研究 2.3 再生瀝青混凝土於養護階段之研究 第三章 再生瀝青混凝土碳排量與成本計算 3.1 目標與範疇界定 3.1.1 瀝青混凝土種類 3.1.2 範疇界定與功能單元 3.2 養護次數計算方法 3.2.1 交通量ESAL計算 3.2.2 疲勞壽命轉換養護次數 3.3 碳排量之數據蒐集與計算方法 3.3.1 原料開採階段 3.3.2 原料運輸階段 3.3.3 產品製成階段 3.3.4 搖籃到大門階段之碳排量 3.3.5 建造階段 3.3.6 養護階段 3.3.7 建造與養護階段之碳排量 3.4 成本數據蒐集與計算方法 第四章 結果分析 4.1 鋪面服務壽齡 4.2 減碳效益評估比較 4.3 成本效益評估比較 4.4 敏感性分析 4.4.1 交通量年增率 4.4.2 再生瀝青混凝土疲勞壽命 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    [1]環境部,中華民國國家溫室氣體排放清冊報告,2023。
    [2]Huang, Y., R. Bird, and O. Heidrich, Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 2009. 17(2): p. 283-296.
    [3]Aurangzeb, Q., et al., Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conservation and Recycling, 2014. 83: p. 77-86.
    [4]Araújo, J.P.C., J.R.M. Oliveira, and H.M.R.D. Silva, The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transportation Research Part D: Transport and Environment, 2014. 32: p. 97-110.
    [5]Celauro, C., et al., Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road. Transportation Research Part D: Transport and Environment, 2015. 34: p. 41-51.
    [6]Del Ponte, K.L., State dot environmental and economic benefits of recycled material utilization in highway pavements. 2016.
    [7]Saeedzadeh, R., et al., Sustainability Assessment of Recycled Asphalt Mixtures Based on Performance in Full-Scale Testing. Journal of Transportation Engineering, Part B: Pavements, 2018. 144(2): p. 04018024.
    [8]Chou, C.-P. and N. Lee, Assessment of Life Cycle Energy Saving and Carbon Reduction of Using Reclaimed Asphalt Concrete, in Environmental Sustainability in Transportation Infrastructure. 2015. p. 200-212.
    [9]李寧、周家蓓,使用再生瀝青混凝土之節能與減碳效益探討,鋪面工程第11卷第1期(2013):頁55-66。
    [10]楊典樵,柔性路面工程之二氧化碳排放量評估,碩士論文,逢甲大學土木工程所,2010。
    [11]Gong, H., B. Huang, and X. Shu, Field performance evaluation of asphalt mixtures containing high percentage of RAP using LTPP data. Construction and Building Materials, 2018. 176: p. 118-128.
    [12]Huang, B., et al., Laboratory Investigation of Mixing Hot-Mix Asphalt with Reclaimed Asphalt Pavement. Transportation Research Record, 2005. 1929(1): p. 37-45.
    [13]林晉哲,添加不同再生料含量對瀝青混凝土之影響,碩士論文,國立成功大學土木工程學系碩博士班,2004。
    [14]顏庭嘉,再生瀝青混凝土抗開裂性質與績效平衡分析,碩士論文,國立臺灣科技大學營建工程系,2022。
    [15]陳彥霖,再生瀝青混凝土受反覆載重之績效分析,碩士論文,國立臺灣科技大學營建工程系,2023。
    [16]經濟部工業局,ISO14000系列-生命週期評估技術與應用手冊,2011。
    [17]Guinee, J.B., et al., Life cycle assessment: past, present, and future. 2011, ACS Publications.
    [18]張又升,建築物生命週期二氧化碳減量評估,博士論文,國立成功大學建築學系碩博士班,2002。
    [19]陳漢錚,鋼筋混凝土由原料開採至產品之生命週期評估,碩士論文,國立臺灣海洋大學河海工程學系,2011。
    [20]ISO, ISO 14040 Environmental management-Life cycle assessment-Principles and framework. 2006.
    [21]Thenoux, G., Á. González, and R. Dowling, Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile. Resources, Conservation and Recycling, 2007. 49(4): p. 325-339.
    [22]Chiu, C.-T., T.-H. Hsu, and W.-F. Yang, Life cycle assessment on using recycled materials for rehabilitating asphalt pavements. Resources, Conservation and Recycling, 2008. 52(3): p. 545-556.
    [23]Vidal, R., et al., Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 2013. 74: p. 101-114.
    [24]Jiang, R. and P. Wu, Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions. Transportation Research Part D: Transport and Environment, 2019. 77: p. 148-163.
    [25]環境部,產品與服務碳足跡計算指引,2010。
    [26]IPCC, 2021: Climate Change 2021 - the Physical Science basis. Interaction, 2021. 49(4): p. 44-45.
    [27]環境部,碳足跡產品類別規則,基礎建設-道路,2019。
    [28]朱崇德,瀝青混凝土產品階段碳排放之研究,碩士論文,國立高雄科技大學營建工程系,2020。
    [29]楊士賢、張芳綺、林俊豪、劉彥宏、賴明煌,盤查台灣地區熱拌瀝青混凝土產品於生產與鋪築階段之能源消耗與環境衝擊,鋪面工程第15卷第2期(2017):頁51-58。
    [30]許凱鈞,透水性鋪面碳足跡系統建置之研擬,碩士論文,國立中央大學土木工程學系,2015。
    [31]陳保展、羅國峯、林彥宇、許珮蒨、王寧沂,西濱快速公路八棟寮至九塊厝新建工程之鋪面工程生命週期排碳特性分析,鋪面工程第16卷第2期(2018):頁55-64。
    [32]Coleri, E., Y. Zhang, and B.M. Wruck, Mechanistic-Empirical Simulations and Life-Cycle Cost Analysis to Determine the Cost and Performance Effectiveness of Asphalt Mixtures Containing Recycled Materials. Transportation Research Record, 2018. 2672(40): p. 143-154.
    [33]Al-Qadi, I.L. and W.N. Nassar, Fatigue Shift Factors to Predict HMA Performance. International Journal of Pavement Engineering, 2003. 4(2): p. 69-76.
    [34]Mateos, A., J.P. Ayuso, and B.C. Jáuregui, Shift factors for asphalt fatigue from full-scale testing. Transportation research record, 2011. 2225(1): p. 128-136.
    [35]Pronk, A. C., M. R. Poot, M. M. J. Jacobs, and R. F. Gelpke. Haversine Fatigue Testing in Controlled Deflection Mode. Is it Possible? Presented at 89th Annual Meeting of the Transportation Research Board, Washington, D.C., 2010.
    [36]交通部,柔性鋪面設計規範,2012。
    [37]交通部公路局,公路交通量調查統計表(2022)。檢自https://www.thb.gov.tw/News_Download.aspx?n=273&sms=12823
    [38]交通部,機動車輛登記數(2022)。檢自https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
    [39]Cheng, H., et al., Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests. Construction and Building Materials, 2021. 273: p. 121675.
    [40]環境部,溫室氣體排放係數管理表6.0.4版(2019)。檢自https://ghgregistry.moenv.gov.tw/epa_ghg/Downloads/FileDownloads.aspx?Type_ID=1
    [41]經濟部地質調查及礦業管理中心,砂土石產銷調查報告(98-110)。檢自https://amis.mine.gov.tw/know/liter/SALEREPORT
    [42]台灣電力公司,歷年行業別用電量統計(98~110)。檢自https://www.taipower.com.tw/tc/page.aspx?mid=43&cid=29&cchk=34db42ba-62b1-4684-9fc8-59881779ac23
    [43]吳國洋,混凝土製品應用於土木工程之減碳效益評估-以道路、建築工程為例,碩士論文,國立中央大學土木工程研究所,2011。
    [44]交通部,110年汽車貨運調查報告(2022)。檢自https://www.motc.gov.tw/ch/app/data/view?module=survey&id=56&serno=202208080001
    [45]行政院公共工程委員會,研訂公共工程計畫相關審議基準及綠色減碳指標計算規則委託研究-減碳規則篇,2012。
    [46]行政院公共工程委員會,公共工程價格資料庫。檢自
    https://pcic.pcc.gov.tw/pwc-web/service/mrp0201r
    [47]Ozbay, K., N.A. Parker, and D. Jawad, Guidelines for life cycle cost analysis. 2003.

    QR CODE