簡易檢索 / 詳目顯示

研究生: 陳文記
Tran Van Nho
論文名稱: 人血清白蛋白質水溶液之表面張力和擴張模量測定研究
Measurement of surface tension and dilational modulus of aqueous HSA solution
指導教授: 林析右
Shi-Yow Lin
口試委員: 曾文祺
Wen-Chi Tseng
陳立仁
Li-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 73
外文關鍵詞: human serum albumin
相關次數: 點閱:205下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Human serum albumin (HSA) is a versatile globular protein with broad applicability in pharmaceuticals and biomedical implants. Despite extensive use, the surface-active nature of HSA, particularly its dynamic/equilibrium surface tension (ST) and dilational rheology has received limited attention in the literature. Consequently, this study aims to fill this research gap by investigating the ST (dynamic/equilibrium) and evaluating the dilational modulus of an adsorbed HSA film at the air-water interface.
A pendant bubble tensiometer was employed for measuring the relaxations of ST and bubble SA of purely aqueous HSA solutions at CHSA = 0.01- 60 (10-10 mol/cm3). Generally, the ST of an HSA solution initially remained relatively constant (at ST of solvent) for a while and then exhibited a smooth and significant decrease. Afterward (at the latter adsorption stage), the ST relaxed more slowly, eventually approaching and remaining reasonably constant while showing slight fluctuations for a considerable duration. The equilibrium ST of a HSA solution was obtained by examining the dynamic ST data at the latter adsorption stage. Irrespective of the CHSA, the equilibrium ST of the HSA solutions was noted to remain constant at 52.60.1 mN/m over a concentration range that spanned ~5 orders of magnitude.
The dilational modulus of a saturated HSA film (Esat) at an air-water interface was evaluated at C = 0.2 – 60 (10-10 mol/cm3) using a novel method (Tseng et al. 2022, J Mol Liq, 349, 118113) [1]; one that relied on identifying minute distinct perturbances and utilizing its ST and SA relaxation data. The data showed three distinct trends: (i) at CHSA = 0.052 – 0.2 (10-10 mol/cm3), Esat remained relatively unchanged at ~22 mN/m; (ii) at 0.2 < CHSA  1.0 (10-10 mol/cm3), Esat exhibited a sharp increase from ~22 to ~50 mN/m; and (iii) at CHSA > 1.010-10 mol/cm3, Esat remained relatively constant at ~50 mN/m with only slight variation.
The dynamic and equilibrium ST data of HSA solutions was compared with that of purely aqueous BSA solutions. At a relatively low concentration (e.g., C = 0.05210-10 mol/cm3), the ST of these protein solutions relaxed in a near-identical manner. However, at increasing concentration, the ST relaxation profiles visibly diverged, with the ST of the HSA solution relaxing faster than that of BSA. Furthermore, the comparison of equilibrium ST demonstrated that the equilibrium ST of HSA and BSA solutions remained constant at 52.60.1 and 52.30.1 mN/m, respectively; thereby confirming that the constant equilibrium ST behavior was not just limited to BSA (purely aqueous and in aqueous phosphate buffer) solutions, but was also observable for another globular protein HSA as well.

Abstract i Acknowledgments ii Table of Contents iii Notations v Abbreviations vi List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Objectives and motivation 1 1.2 Outline 2 Chapter 2 Literature Review 3 2.1 Surfactant 3 2.2 Classification of surfactant 3 2.3 Critical micelle concentration (CMC) 4 2.4 Proteins 5 2.4.1 Fundamentals 5 2.4.2 Synthesis 5 2.4.3 Amino acids 5 2.4.4 Conformation 5 2.5 Surface tension measurement 6 2.5.1 Wilhelmy plate and du-Nouy ring method 7 2.5.2 Drop weight/volume method 7 2.5.3 Maximum bubble pressure method 8 2.5.4 Pendant bubble/drop method 9 2.6 Dilational rheology and dilational modulus 10 2.7 Evaluation of dilational modulus in the literature 11 2.7.1 Oscillating bubble method 12 2.7.2 Oscillating drop method 13 2.7.3 Expanding/compressing drop 15 2.7.4 Oscillating barrier method 16 2.7.5 Oscillating ring method 18 Chapter 3 Materials and Methods 21 3.1 Materials 21 3.1.1 Human serum albumin 21 3.1.2 Bovine serum albumin 22 3.2 Methodology 23 3.2.1 Solution preparation 23 3.2.2 Pendant bubble tensiometer 23 3.2.3 Evaluation of the dilational modulus 27 Chapter 4 Dynamic and equilibrium ST of aqueous HSA solution 28 4.1 Dynamic ST 28 4.2 Duration of the induction regime 29 4.3 Evaluating the equilibrium ST 30 4.4 Validating the equilibrium ST 36 4.5 Equilibrium ST 39 Chapter 5 Dilational modulus of HSA film at air-water interface 41 5.1 Evaluation of E 41 Chapter 6 Surface tension comparison – HSA and BSA 46 6.1 Dynamic ST 46 6.2 HSA and BSA dynamic ST comparison 47 6.3 Duration of induction regime (tind) 49 6.4 Equilibrium ST 50 Chapter 7 Conclusions and future work 51 7.1 Conclusions 51 7.2 Future work 51 Appendix 57 A1. The Maxwell’s model and its application in interfacial dynamics 57 A2. An overview of amino acids 58 A3. Physical properties of HSA and BSA 60

[1] W.C. Tseng, R.Y. Tsay, T.T.Y. Le, S. Hussain, B.A. Noskov, A. Akentiev, H.H. Yeh, S.Y. Lin, Evaluation of the dilational modulus of protein films by pendant bubble tensiometry, J of Mol Liq 349 (2022) 118113.
[2] D.G. Vanselow, Role of constraint in catalysis and high-affinity binding by proteins, Biophys J 82(5) (2002) 2293-2303.
[3] M.A. Bos, T. Van Vliet, Interfacial rheological properties of adsorbed protein layers and surfactants: a review, Adv Colloid Interface Sci. 91(3) (2001) 437-471.
[4] M.J. Rosen, J.T. Kunjappu, Surfactants and interfacial phenomena, John Wiley & Sons (2012).
[5] S. Deodhar, P. Rohilla, M. Manivannan, S.P. Thampi, M.G. Basavaraj, Robust method to determine critical micelle concentration via spreading oil drops on surfactant solutions, Langmuir 36(28) (2020) 8100-8110.
[6] B.D. Ribeiro, D.S. Alviano, D.W. Barreto, M.A.Z. Coelho, Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): critical micellar concentration, antioxidant and antimicrobial activities, Colloids and Surf A: Physicochem Eng Asp 436 (2013) 736-743.
[7] M. Blankart, K. Neugebauer, J. Hinrichs, Expansion of the concept of critical micelle concentration for the application of a saturated monoacylglyceride emulsifier in aerosol whipping cream, Food Res Int 161 (2022) 111791.
[8] G.N. Smith, P. Brown, S.E. Rogers, J. Eastoe, Evidence for a critical micelle concentration of surfactants in hydrocarbon solvents, Langmuir 29(10) (2013) 3252-3258.
[9] M. Brown, Biosurfactants for cosmetic applications, Int J Cosmet Sci 13(2) (1991) 61-64.
[10] M. Esmaili, S.M. Ghaffari, Z. Moosavi Movahedi, M.S. Atri, A. Sharifizadeh, M. Farhadi, R. Yousefi, J.M. Chobert, T. Haertlé, A.A. Moosavi Movahedi, Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application, LWT - Food Sci Technol 44(10) (2011) 2166-2172.
[11] L.P. Jackson, R. Andrade, I. Pleasent, B.P. Grady, Effects of pH and surfactant precipitation on surface tension and CMC determination of aqueous sodium n-alkyl carboxylate solutions, J Surfactants Deterg 17 (2014) 911-917.
[12] S.Y. Lin, K. McKeigue, C. Maldarelli, Diffusion‐controlled surfactant adsorption studied by pendant drop digitization, AIChE J 36(12) (1990) 1785-1795.
[13] M. Bielawska, A. Chodzińska, B. Jańczuk, A. Zdziennicka, Determination of CTAB CMC in mixed water+ short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements, Colloids and Surf A: Physicochem Eng Asp 424 (2013) 81-88.
[14] T.T.Y. Le, S. Hussain, S.Y. Lin, A study on the determination of the critical micelle concentration of surfactant solutions using contact angle data, J Mol Liq 294 (2019) 111582.
[15] V. Dolzhikova, O. Soboleva, B. Summ, Contact angles as indicators of micellization, Colloid J 59 (1997) 283-286.
[16] S.Y. Lin, Y.Y. Lin, E.M. Chen, C.T. Hsu, C.C. Kwan, A study of the equilibrium surface tension and the critical micelle concentration of mixed surfactant solutions, Langmuir 15(13) (1999) 4370-4376.
[17] H. Klevens, Solubilization, Chem Rev 47(1) (1950) 1-74.
[18] B. Vulliezlenormand, J.L. Eiselé, Determination of detergent critical micellar concentration by solubilization of a colored dye, Anal Biochem 208(2) (1993) 241-243.
[19] K. Ogino, T. Kubota, H. Uchiyama, M. Abe, Micelle formation and micellar size by a light scattering technique, Jpn Oil Chem Soc 37(8) (1988) 588-591.
[20] Ö. Topel, B.A. Çakır, L. Budama, N. Hoda, Determination of critical micelle concentration of polybutadiene-block-poly (ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering, J Mol Liq 177 (2013) 40-43.
[21] E. Buxbaum, Fundamentals of protein structure and function, Springer (2007).
[22] X.-S. Zheng, P. Hu, Y. Cui, C. Zong, J.-M. Feng, X. Wang, B. Ren, BSA-coated nanoparticles for improved SERS-based intracellular pH sensing, Anal Chem. 86(24) (2014) 12250-12257.
[23] D.M. Chudakov, M.V. Matz, S. Lukyanov, K.A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues, Physiol Rev. 90(3) (2010) 1103-1163.
[24] T. Thomas, Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications, Cell Mol Life Sci. 58 (2001) 244-258.
[25] C. Carter, D. Houlihan, Protein synthesis, Fish Physiol 20 (2001) 31-75.
[26] C.I. Branden, J. Tooze, Introduction to protein structure, Garland Science (2012).
[27] D. Whitford, Proteins: structure and function, John Wiley & Sons (2013).
[28] I. Fatma, V. Sharma, R.C. Thakur, A. Kumar, Current trends in protein-surfactant interactions: A review, J Mol Liq 341 (2021) 117344.
[29] S. Ebnesajjad, Surface tension and its measurement, Handbook of adhesives and surface preparation, Elsevier (2011), pp. 21-30.
[30] S.Y. Lin, L.J. Chen, J.W. Xyu, W.J. Wang, An examination on the accuracy of interfacial tension measurement from pendant drop profiles, Langmuir 11(10) (1995) 4159-4166.
[31] A. Adamsom, A. Gast, Physical chemistry of surfaces, A Wiley-Interscience Publication (1997).
[32] M. Wilkinson, Extended use of, and comments on, the drop-weight (drop-volume) technique for the determination of surface and interfacial tensions, J Colloid Interf Sci. 40(1) (1972) 14-26.
[33] R. Defay, J.R. Hommelen, I. Measurement of dynamic surface tensions of aqueous solutions by the oscillating jet method, J Colloid Sci. 13(6) (1958) 553-564.
[34] C. MacLeod, C. Radke, A growing drop technique for measuring dynamic interfacial tension, J Colloid Interf Sci. 160(2) (1993) 435-448.
[35] V. Fainerman, R. Miller, P. Joos, The measurement of dynamic surface tension by the maximum bubble pressure method, Colloid Polym Sci. 272 (1994) 731-739.
[36] R. Van den Bogaert, P. Joos, Dynamic surface tensions of sodium myristate solutions, J Phys Chem. 83(17) (1979) 2244-2248.
[37] P. Joos, J. Van Hunsel, Spreading of aqueous surfactant solutions on organic liquids, J Colloid Interf Sci. 106(1) (1985) 161-167.
[38] H. Lange, Dynamic surface tension of detergent solutions at constant and variable surface area, J Colloid Sci. 20(1) (1965) 50-61.
[39] K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Polymers in aqueous solution, Wiley-Blackwell (2002).
[40] C. Jho, R. Burke, Drop weight technique for the measurement of dynamic surface tension, J Colloid Interf Sci. 95(1) (1983) 61-71.
[41] A. Makievski, R. Miller, G. Czichocki, V. Fainerman, Adsorption behaviour of oxyethylated anionic surfactants 2. Adsorption kinetics, Colloids Surf A: Physicochem Eng. 133(3) (1998) 313-326.
[42] S. Zholob, V. Fainerman, R. Miller, Dynamic adsorption behavior of polyethylene glycol octylphenyl ethers at the water/oil interface studied by a dynamic drop volume technique, J Colloid Interf Sci. 186(1) (1997) 149-159.
[43] R.L. Bendure, Dynamic surface tension determination with the maximum bubble pressure method, J Colloid Interf Sci. 35(2) (1971) 238-248.
[44] J. Kloubek, Measurement of the dynamic surface tension by the maximum bubble pressure method. II. Calculation of the effective age of the solution-air interface, J Colloid Interf Sci. 41(1) (1972) 1-6.
[45] X. Zhang, M.T. Harris, O.A. Basaran, Measurement of dynamic surface tension by a growing drop technique, J Colloid Interf Sci. 168(1) (1994) 47-60.
[46] S.Y. Lin, K. McKeigue, C. Maldarelli, Diffusion-limited interpretation of the induction period in the relaxation in surface tension due to the adsorption of straight chain, small polar group surfactants: theory and experiment, Langmuir 7(6) (1991) 1055-1066.
[47] T.T.Y. Le, A study on the Dilational Modulus and Adsorption Kinetics of Globular Protein BSA, Doctoral dissertation (National Taiwan University of Science and Technology) (2022).
[48] V.G. Babak, J. Desbrieres, V.E. Tikhonov, Dynamic surface tension and dilational viscoelasticity of adsorption layers of a hydrophobically modified chitosan, Colloids Surf A: Physicochem Eng Asp. 255(1-3) (2005) 119-130.
[49] V.B. Fainerman, V.I. Kovalchuk, E.V. Aksenenko, I.I. Zinkovych, A.V. Makievski, M.V. Nikolenko, R. Miller, Dilational viscoelasticity of proteins solutions in dynamic conditions, Langmuir 34(23) (2018) 6678-6686.
[50] N.A. Alexandrov, K.G. Marinova, T.D. Gurkov, K.D. Danov, P.A. Kralchevsky, S.D. Stoyanov, T.B. Blijdenstein, L.N. Arnaudov, E.G. Pelan, A. Lips, Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times, J Colloid Interf Sci. 376(1) (2012) 296-306.
[51] J.M.R. Patino, C.C. Sánchez, M.R.R. Niño, M.C. Fernández, Structural and dynamic properties of milk proteins spread at the air–water interface, J Colloid Interface Sci. 242(1) (2001) 141-151.
[52] M. Tihonov, O.Y. Milyaeva, B. Noskov, Dynamic surface properties of lysozyme solutions. Impact of urea and guanidine hydrochloride, Colloids Surf B: Biointerfaces. 129 (2015) 114-120.
[53] W.K. Wee, M. Mackley, The rheology and processing of a concentrated cellulose acetate solution, Chem Eng Sci. 53(6) (1998) 1131-1144.
[54] M. Leser, S. Acquistapace, A. Cagna, A. Makievski, R. Miller, Limits of oscillation frequencies in drop and bubble shape tensiometry, Colloids Surf A: Physicochem Eng Asp. 261(1-3) (2005) 25-28.
[55] F. Ravera, G. Loglio, V.I. Kovalchuk, Interfacial dilational rheology by oscillating bubble/drop methods, Curr Opin Colloid Interface Sci. 15(4) (2010) 217-228.
[56] G. Loglio, P. Pandolfini, R. Miller, A. Makievski, F. Ravera, M. Ferrari, L. Liggieri, Drop and bubble shape analysis as tool for dilational rheology studies of interfacial layers, Novel methods to study interfacial layers, Elsevier Science (2001), pp. 439-484.
[57] E.M. Freer, K.S. Yim, G.G. Fuller, C.J. Radke, Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: comparison of shear and dilatation deformation, J Phys Chem B. 108(12) (2004) 3835-3844.
[58] J.M. Lorenzo, Measuring the surface dilatational viscosities of surfactant monolayers at the air-water interface by the shape analysis of deforming pendant drops, City University of New York (2001).
[59] J. Kokelaar, A. Prins, M. De Gee, A new method for measuring the surface dilational modulus of a liquid, J Colloid Interf Sci. 146(2) (1991) 507-511.
[60] J. Lucassen, M. Van den Tempel, Longitudinal waves on visco-elastic surfaces, J Colloid Interf Sci. 41(3) (1972) 491-498.
[61] R. Miller, J.K. Ferri, A. Javadi, J. Krägel, N. Mucic, R. Wüstneck, Rheology of interfacial layers, Colloid Polym Sci. 288 (2010) 937-950.
[62] N.A. Alexandrov, K.G. Marinova, T.D. Gurkov, K.D. Danov, P.A. Kralchevsky, S.D. Stoyanov, T.B. Blijdenstein, L.N. Arnaudov, E.G. Pelan, A. Lips, Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times, J Colloid Interface Sci. 376(1) (2012) 296-306.
[63] T. Pappa, S. Refetoff, Thyroid hormone transport proteins: thyroxine-binding globulin, transthyretin, and albumin, (2017).
[64] M.E. Sitar, S. Aydin, U. Cakatay, Human serum albumin and its relation with oxidative stress, Clin Lab 59(9-10) (2013) 945-952.
[65] P.A. Zunszain, J. Ghuman, A.F. McDonagh, S. Curry, Crystallographic analysis of human serum albumin complexed with 4Z, 15E-bilirubin-IXα, J Mol Biol 381(2) (2008) 394-406.
[66] S. Curry, H. Mandelkow, P. Brick, N. Franks, Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites, Nat Struct Biol 5(9) (1998) 827-835.
[67] G. Rabbani, S.N. Ahn, Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo, Int J Biol Macromol 123 (2019) 979-990.
[68] J. Ghuman, P.A. Zunszain, I. Petitpas, A.A. Bhattacharya, M. Otagiri, S. Curry, Structural basis of the drug-binding specificity of human serum albumin, J Mol Biol 353(1) (2005) 38-52.
[69] D.A. Belinskaia, P.A. Voronina, A.A. Batalova, N.V. Goncharov, Serum albumin, Encyclopedia 1(1) (2020) 65-75.
[70] B. Elsadek, F. Kratz, Impact of albumin on drug delivery-New applications on the horizon, J Controlled Release 157(1) (2012) 4-28.
[71] H.M. Ding, Y.Q. Ma, Computer simulation of the role of protein corona in cellular delivery of nanoparticles, Biomater 35(30) (2014) 8703-8710.
[72] RCSB Protein Data Bank (https://www.rcsb.org).
[73] O. Becconi, E. Ahlstrand, A. Salis, R. Friedman, Protein‐ion interactions: Simulations of bovine serum albumin in physiological solutions of NaCl, KCl and LiCl, Isr J Chem 57(5) (2017) 403-412.
[74] C. Alvin, The adsorption kinetic of ionic surfactants, Doctoral dissertation (National Taiwan University of Science and Technology) (2016).

QR CODE