簡易檢索 / 詳目顯示

研究生: Reza Aulia Akbar
Reza Aulia Akbar
論文名稱: 運用Microsoft Hololens 2 於混合實境裝配模擬訓練的用戶體驗評估
User Experience Evaluation of the Microsoft Hololens 2 as a Mixed Reality Device for 3D Assembly Simulation Training
指導教授: 林久翔
Chiuhsiang Joe Lin
口試委員: 林承哲
Cheng-Jhe Lin
許聿靈
Yu-Ling Hsu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 189
中文關鍵詞: 裝配模擬訓練Hololens 2人類表現學習率可用性用戶體驗
外文關鍵詞: Assembly Simulation Training, Microsoft Hololens 2, Human Performance, Learning Rate, Usability, User Experience
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

裝配操作是與心理運動、動覺和認知相關的基本製造類型。操作員需要通過培訓提高他們的技能、知識和經驗來適應裝配任務,以提高裝配表現並防止錯誤。仍然在各個行業中為操作員提供指導的傳統學習媒體之一是紙質手冊。然而,裝配手冊在應用中存在諸多弊端:任務量大、耗時長、單調、精神疲勞、解讀錯誤。 Hololens 2 是裝配操作的沉浸式媒體培訓解決方案之一。本研究評估了 Hololens 2 作為 3D 裝配模擬訓練的混合實境設備的用戶體驗。本研究將使用 Hololens 2 的媒體組裝培訓的學習率與手動手冊進行比較。增強裝配的人類表現和學習率,通過操作時間、裝配錯誤和抓取錯誤來衡量。此外,本研究測量了用戶在感受上的可用性、臨場感、沉浸感和暈眩感。用於組裝操作的對像是豐田 1.6 升 4A-GE 的氣缸蓋組件,具有六個主要部件。基於這項研究,可以得出結論,使用 Hololens 2 進行裝配模擬培訓比手動手冊更有效。使用 Hololens 2 作為裝配模擬器培訓,參與者體驗在性能和學習率有顯著提升,表現出更短的操作時間和更少的錯誤。 Hololens 2 以正價觸發高喚醒,使參與者感到快樂和興奮。 LF/HF 比率未能識別參與者的喚醒水平,因為它與自主神經系統 (ANS)、短期測量和實驗運動有關。另一方面,手動手冊會觸發具有負效價的高喚醒,這會使參與者感到沮喪和緊張。在衡量用戶沉浸感方面,PQ 與 ITQ 呈中等正相關,表明用戶在與混合實境環境交互時會感受到高度的臨場感和體驗。 Hololens 2 的平均 SUS 得分為 87.5 分(滿分 100 分),在可用性方面被歸類為 A 級(可以想像的最佳)。 SSQ 得分結果為 4.48(低於 5),屬於 Hololens 2 應用的輕微暈眩症狀。因此,Hololens 2 可用於訓練操作員的精神運動、感覺運動和認知。因此,操作人員可以獲得互動、有效、身臨其境、有趣且腦力勞動強度低的培訓氛圍。


Assembly operations are a basic type of manufacturing related to psychomotor, kinesthetic, and cognitive. Operators need to adapt to assembly tasks by increasing their skills, knowledge, and experience through training to improve assembly performance and prevent errors. One of the conventional learning media that is still used in various industries to provide instructions for operators is the paper-based manual. However, the assembly manual has various drawbacks in its application: high task workload, time-consuming, monotonous, mental tiredness, and misinterpretation. One of the immersive media training solutions for assembly operations is Hololens 2. This study evaluates the user experience of Hololens 2 as a mixed reality device for 3D assembly simulation training. This study analyzes the learning effectiveness of Hololens 2 as assembly training media. Human performance and learning rate on augmented assembly are measured by time duration, assembly error, and capturing error. In addition, this study measures the usability, presence level, immersion, and cybersickness felt by the user on Hololens 2. The object used for assembly operation is the cylinder head component of Toyota's 1.6 Litre 4A-GE with six main parts. Based on this research, it can be concluded that Hololens 2 is effective as assembly simulator training. Using Hololens 2 as an assembly simulator training, participants experienced a significant increase in performance and learning rate indicated by shorter time duration and minor errors. Hololens 2 triggers high arousal with positive valence, making participants feel happy and excited. The LF/HF ratio failed to identify the arousal level of the participants because it was related to the Autonomic Nervous System (ANS), short-duration measurement, and experimental movement. On the other hand, the manual handbook triggers high arousal with negative valence, which causes participants to feel frustrated and tense. To measure user immersion, PQ has a moderate positive correlation with ITQ, indicating that users feel a high presence and experience when interacting with mixed reality environments. Hololens 2 has an average SUS score of 87.5 out of 100, classified as Grade A (best imaginable) for usability. The results of the SSQ score obtained 4.48 (below 5), which is classified as minor cybersickness symptoms for Hololens application. Therefore, Hololens 2 can be applied to train the operator in psychomotor, sensorimotor, and cognitive. Thus, operators can get a training atmosphere that is interactive, effective, immersive, fun, and has a low mental workload.

ABSTRACT 摘要 PREFACE TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES ABBREVIATIONS AND ACRONYMS CHAPTER I INTRODUCTION 1.1. Background 1.2. Problem Formulation 1.3. Research Objectives 1.4. Research Benefits 1.5. Research Scope 1.5.1. Research Limitations 1.5.2. Research Assumptions 1.6. Report Outline CHAPTER II LITERATURE REVIEW 2.1. Human Computer Interaction 2.2. User Experience 2.3. Usability 2.3.1. Satisfaction 2.3.2. Effectiveness 2.3.3. Efficiency 2.3.4. Errors 2.3.5. Learnability 2.3.6. Memorability 2.4. Mixed Reality 2.5. Microsoft Hololens 2 2.6. Skin Conductance / Galvanic Skin Response 2.7. Heart Rate Variability and LF/HF Ratio 2.8. Human Performance in Assembly Operation 2.9. Toyota’s 1.6 Litre 4A-GE Engine 2.10. Presence Questionnaire 2.11. Immersive Tendencies Questionnaire 2.12. System Usability Scale 2.13. Simulator Sickness Questionnaire 2.14. Research Roadmap CHAPTER III RESEARCH METHODOLOGY 3.1. Research Variable 3.2. Research Hypothesis 3.3. Research Scenario 3.4. Research Procedure 3.4.1. Preparation Stage 3.4.2. Research Methodology Stage 3.4.3. Pilot Experiment Stage 3.4.4. Final Experiment Stage 3.4.5. Data Processing Stage 3.4.6. Analysis Stage 3.4.7. Conclusion and Recommendation CHAPTER IV DATA COLLECTION AND PROCESSING 4.1. Participant 4.1.1. Determination of the Participants 4.1.2. Participant Criteria 4.2. Equipment and Stimuli 4.2.1. Research Equipment 4.2.2. Research Stimuli 4.3. Questionnaire Design 4.3.1. Presence Questionnaire Design 4.3.2. Immersive Tendencies Questionnaire Design 4.3.3. System Usability Scale Questionnaire Design 4.4. Data Processing 4.4.1. Pre-Test and Post-Test Data Processing 4.4.2. Data Processing for Time Duration, Assembly Error, and Capturing Error 4.4.3. Data Processing for SC/GSR Value and LF/HF Ratio 4.4.4. Data Processing for PQ, ITQ, SUS, and SSQ 4.4.5. Data Processing Results Summary CHAPTER V DATA ANALYSIS AND DISCUSSION 5.1. Analysis of the Learning Effectiveness Between Hololens 2 and the Manual Handbook for Assembly Training Media 5.2. Human Performance and Learning Rate Analysis of the User using Hololens 2 for 3D Assembly Simulator Training 5.3. Physiological Feedback Related to Arousal and Mental Workload Analysis of the User Between Hololens 2 and Manual Handbook for Assembly Training Media 5.4. Analysis of the Presence, Immersion, Usability, and Cybersickness of Hololens 2 for 3D Assembly Simulator Training 5.5. User Experience Evaluation of Microsoft Hololens 2 for 3D Assembly Simulation Training CHAPTER VI CONCLUSION AND RECOMMENDATION 6.1 Conclusion 6.2 Recommendation REFERENCES APPENDIX Appendix 1. Research Timeline Appendix 2. Pre-Test Engine Assembly Case Appendix 3. Post-Test Engine Assembly Case Appendix 4. Standard Time Calculation for Manual Handbook Appendix 5. Experiment Data Collecting Appendix 6. Statistical Test Results Appendix 7. Physiological Monitoring and Feedback Output (BioTrace+) Appendix 8. Plot Graph of Data Processing Results Appendix 9. Research Documentation

Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., & Tversky, B. (2003). Designing Effective Step-by-Step Assembly Instructions. ACM Transactions on Graphics, 22(3), 828-837. doi:10.1145/882262.882352
Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the System Usability Scale. International Journal of Human-Computer Interaction, 24(6), 574-594. doi:10.1080/10447310802205776
Bangor, A., Kortum, P., & Miller, J. (2009). Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. Journal of Usability Studies, 4(3), 114-123.
Baños, R. M., Botella, C., Raya, M. L., & Liaño, V. (2005). Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology & Behavior, 7(6), 734-741. doi:10.1089/cpb.2004.7.734
Bednarz, T. P., Caris, C., Thompson, J., Wesner, C., & Dunn, M. (2010). Human-Computer Interaction Experiments Immersive Virtual Reality Applications for the Mining Industry. International Conference on Advanced Information Networking and Applications (pp. 1323-1327). Perth: IEEE. doi:10.1109/AINA.2010.180
Bottani, E., Longo, F., Nicoletti, L., Padovano, A., Tancredi, G. P., Tebaldi, L., . . . Vignali, G. (2021). Wearable and Interactive Mixed Reality Solutions for Fault Diagnosis and Assistance in Manufacturing Systems: Implementation and Testing in an Aseptic Bottling Line. Computers in Industry, 128, 1-14. doi:10.1016/j.compind.2021.103429
Brooke, J. (2013). SUS: A Retrospective. Journal of Usability Studies, 8(2), 29-40. Retrieved from https://uxpajournal.org/wp-content/uploads/sites/7/pdf/ JUS_Brooke_February_2013.pdf
Claydon, M. (2015). Alternative Realities: From Augmented Reality to Mobile Mixed Reality. Tampere: University of Tampere.
Dar-Ei, E. M. (2000). Human Learning: From Learning Curves to Learning Organizations. Amsterdam: Kluwer Academic Publisher.
Davim, J. P. (2012). Statistical and Computational Techniques in Manufacturing. Springer.
Dersin Studio. (2019). Toyota 4A-GE 1.6L Redtop Engine 3D Model. RenderHub. Retrieved 20 May, 2022, from https://www.renderhub.com/dersin-studio/toyota-4a-ge-1-6l-redtop-engine
Didier, J.-Y., Roussel, D., Mallem, M., Otmane, S., Naudet, S., Pham, Q.-C., . . . Transport, A. (2005). AMRA: Augmented Reality Assistance in Train Maintenance Tasks. IEEE International Symposium on Mixed and Augmented Reality (pp. 17-28). Vienna: IEEE.
Dix, A. (2017). Human–Computer Interaction, Foundations and New Paradigms. Journal of Visual Languages & Computing, 42, 122-134. doi:10.1016/j.jvlc.2016.04.001
Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-Computer Interaction (3rd ed.). England: Pearson Education Limited.
Domagk, S., Schwartz, R. N., & Plass, J. L. (2010). Interactivity in Multimedia Learning: An Integrated Model. Computers in Human Behavior, 26(5), 1024-1033. doi:10.1016/j.chb.2010.03.003
D'Souza, M. E., & Greenstein, J. S. (2003). Listening to Users in a Manufacturing Organization: a Context-Based Approach to the Development of a Computer-Supported Collaborative Work System. International Journal of Industrial Ergonomics, 32(4), 251-264. doi:10.1016/S0169-8141(03)00066-0
Eckberg, D. L., & Sleight, P. (1997). Human Baroreflexes in Health and Disease (1st ed.). Oxford: Clarendon Press.
Field, A. (2005). Discovering Statistics using SPSS (2nd ed.). London: Sage.
Fiorentino, M., Uva, A. E., Gattullo, M., Debernardis, S., & Monno, G. (2014). Augmented Reality on Large Screen for Interactive Maintenance Instructions. Computers in Industry, 65(2), 270-278. doi:10.1016/j.compind .2013.11.004
Flavián, C., Sánchez, S. I., & Orús, C. (2019). The Impact of Virtual, Augmented and Mixed Reality Technologies on the Customer Experience. Journal of Business Research, 100, 547-560. doi:10.1016/j.jbusres.2018.10.050
Forlizzi, J., & Battarbee, K. (2004). Understanding Experience in Interactive Systems. Conference on Designing interactive Systems: Processes, Practices, Methods, and Techniques (pp. 261-268). New York: ACM. doi:10.1145/1013115.1013152
Friedrich, W. (2002). ARVIKA - Augmented Reality for Development, Production and Service. International Symposium on Mixed and Augmented Reality (pp. 3-4). Darmstadt: IEEE Xplore. doi:10.1109/ISMAR.2002.1115059
Galy, E., Cariou, M., & Mélan, C. (2012). What is the Relationship Between Mental Workload Factors and Cognitive Load Types? International Journal of Psychophysiology, 83(3), 269-275. doi:10.1016/j.ijpsycho.2011.09.023
Gamst, G., Meyers, L. S., & Guarino, A. J. (2008). Analysis of Variance Designs A Conceptual and Computational Approach with SPSS and SAS. New York: Cambridge University Press.
Gartner. (2022). Top Strategic Technology Trends for 2022 (12 Trends Shaping the Future of Digital Business). Gartner Inc. Retrieved May 6, 2022, from https://www.gartner.com/en/information-technology/insights/top-technology-trends/top-technology-trends-ebook
Gibby, J. T., Swenson, S. A., Cvetko, S., Rao, R., & Javan, R. (2019). Head-Mounted Display Augmented Reality to Guide Pedicle Screw Placement Utilizing Computed Tomography. International Journal of Computer Assisted Radiology and Surgery, 14, 525-535. doi:10.1007/s11548-018-1814-7
Greco, A., Lanatà, A., Valenza, G., & Rota, G. (2012). On the Deconvolution Analysis of Electrodermal Activity in Bipolar Patients. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6691–6694). San Diego: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EMBC.2012.6347529.
Greenberg, S. (2016). Map of Human Computer Interaction. Retrieved Maret 7, 2020, from http://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/hci_ map.pdf
Hassenzah, M., & Tractinsky, N. (2006). User Experience - a Research Agenda. Behaviour & Information Technology, 25(2), 91-97. doi:10.1080/0144929 0500330331
Hassenzahl, M. (2005). The Thing and I: Understanding the Relationship Between User and Product. In FUNOLOGY (From Usability to Enjoyment) (pp. 31-42). Dordrecht: Kluwer Academic Publishers.
Henderson, S., & Feiner, S. (2010). Opportunistic Tangible User Interfaces for Augmented Reality. IEEE Transactions on Visualization and Computer Graphics, 16(1), 4-16. doi:10.1109/TVCG.2009.91
Hönig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., & Ayanian, N. (2015). Mixed Reality for Robotics. International Conference on Intelligent Robots and Systems (IROS) (pp. 5382-5387). Hamburg: IEEE. doi:10.1109/IROS.2015.7354138
Hou, L., Wang, X., Bernold, L. E., & Love, P. E. (2013). Using Animated Augmented Reality to Cognitively Guide Assembly. Journal of Computing in Civil Engineering, 27, 439-451. doi:10.1061/(ASCE)CP.1943-5487 .0000184
Howell, D. C. (2002). Statistical Methods for Psychology (PSY 613 Qualitative Research and Analysis in Psychology) (8th ed.). Belmonth: Duxbury Press.
Hu, H.-z., Feng, X.-b., Shao, Z.-w., Xie, M., Xu, S., Wu, X.-h., & Ye, Z.-w. (2019). Application and Prospect of Mixed Reality Technology in Medical Field. Current Medical Science, 39, 1-6.
Interaction Design Foundation. (2019). Human-Computer Interaction (HCI). Retrieved May 17, 2022, from https://www.interaction-design.org/literature/ topics/human-computer-interaction
Interaction Design Foundation. (2021). The 7 Factors that Influence User Experience. Retrieved 17 May, 2022, from https://www.interaction-design.org/literature/article/the-7-factors-that-influence-user-experience
Jayanthi, A. N., Nivedha, R., & Vani, C. (2015). Galvanic Skin Response Measurement and Analysis. International Journal of Applied Engineering Research, 10(16), 12447-12452.
Jeng, J. (2005). Usability Assessment of Academic Digital Libraries: Effectiveness, Efficiency, Satisfaction, and Learnability. Journal of Libraries and Information Services, 55(2), 96-121.
Jerome, C. J., & Witmer, B. (2002). Immersive Tendency, Feeling of Presence, and Simulator Sickness: Formulation of a Causal Model. Baltimore: The Society.
Johns, C., Nunez, D., Daya, M., Sellars, D., Casanueva, J., & Blake, E. (2000). The Interaction Between Individuals’ Immersive Tendencies and the Sensation of Presence in a Virtual Environment. Amsterdam: The Eurographics.
Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in Visually Induced Motion Sickness. Applied Ergonomics, 41(4), 494-503. doi:10.1016/ j.apergo.2009.11.006
Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203–220. doi:10.1207/s15327108ijap0303_3
Kim, G. J. (2015). Human Computer Interaction - Fundamentals and Practice. Florida: CRC Press.
Kleiza, V., & Tilindis, J. (2016). An Almost Learning Curve Model for Manual Assembly Performance Improvement. Nonlinear Analysis: Modelling and Control, 21(6), 839–850. doi:10.15388/NA.2016.6.7
Kołodziej, M., Tarnowski, P., Majkowski, A., & Rak, R. (2019). Electrodermal Activity Measurements for Detection of Emotional Arousal. Bulletin of the Polish Academy of Sciences: Technical Sciences, 67(4), 813-826. doi:10.24425/bpasts.2019.130190
Kreibig, S. D. (2010). Autonomic Nervous System Activity in Emotion: A Review. Biological Psychology, 84(3), 394-421. doi:10.1016/j.biopsycho.2010. 03.010
Kress, B. C., & Cummings, W. J. (2017). Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices. SID Symposium Digest of Technical Papers. 48, pp. 127-131. New Jersey: Wiley Online Library. doi:10.1002/sdtp.11586
Kuijk, J. V., Driel, L. V., & Eijk, D. V. (2014). Usability in Product Development Practice: An Exploratory Case Study. Applied Ergonomics, 308-323. doi:10.1016/j.apergo.2014.10.007
Lauer, L., Altmeyer, K., Malone, S., Barz, M., Brünken, R., Sonntag, D., & Peschel, M. (2021). Investigating the Usability of a Head-Mounted Display Augmented Reality Device in Elementary School Children. Sensors, 21(19), 1-20. doi:10.3390/s21196623
Li, M., Seifabadi, R., Long, D., Xu, S., & Wood, B. J. (2020). Accuracy Study of Smartglasses/Smartphone AR Systems for Percutaneous Needle Interventions. SPIE Medical Imaging. 11315, pp. 1-7. Houston: Proceedings of SPIE. doi:10.1117/12.2549278
Li, N., Huber, T., Bochnakova, T., & Park, B. (2021). Registration Assessment Update of Three-Dimensional Holographic Models onto a Computed Tomography Grid using HoloLens 2 Versus HoloLens 1. Journal of Vascular and Interventional Radiology, 32(5), S121. doi:https:// doi.org/10.1016/j.jvir.2021.03.286
Liu, Y., Dong, H., Zhang, L., & Saddik, A. E. (2018). Technical Evaluation of HoloLens for Multimedia: A First Look. IEEE Multimedia, 25(4), 8-18. doi:10.1109/MMUL.2018.2873473
Matuz, A., Linden, D. v., Kisander, Z., Hernádi, I., Kázmér, K., & Csathó, Á. (2021). Enhanced Cardiac Vagal Tone in Mental Fatigue: Analysis of Heart Rate Variability in Time-on-Task, Recovery, and Reactivity. PLOS ONE, 16(3). doi:10.1371/journal.pone.0238670
McCraty, R., & Shaffer, F. (2015). Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-Regulatory Capacity, and Health Risk. Global Advances in Health and Medicine, 4(1), 46-61. doi:10.7453/gahmj.2014.073
McMillan, K., Flood, K., & Glaeser, R. (2017). Virtual Reality, Augmented Reality, Mixed Reality, and the Marine Conservation Movement. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(S1), 162-168. doi:10.1002/aqc.2820
McMillan, S. J., & Hwang, J.-S. (2002). Measures of Perceived Interactivity: An Exploration of the Role of Direction of Communication, User Control, and Time in Shaping Perceptions of Interactivity. Journal of Advertising, 31(3), 29-42. doi:10.1080/00913367.2002.10673674
Meng, Y. G., Kruger, U., Intes, X., Schwaitzberg, S., & De, S. (2020). A Machine Learning Approach to Predict Surgical Learning Curves. Surgery, 167(2), 321-327. doi:10.1016/j.surg.2019.10.008
Microsoft Corporation. (2019, February 24). New HoloLens 2 Gives Microsoft the Edge in the Next Generation of Computing. Retrieved May 12, 2022, from Innovation Stories at Microsoft: https://news.microsoft.com/innovation-stories/hololens-2/
Microsoft Corporation. (2022). Microsoft HoloLens 2. (Microsoft) Retrieved May 17, 2022, from https://www.microsoft.com/en-us/hololens
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented Reality: A Class of Displays on the Reality-Virtuality Continuum. Telemanipulator and Telepresence Technologies. 2351, pp. 282-292. Boston: SPIE. doi:10.1117/12.197321
Montgomery, D. C. (2017). Design and Analysis of Experiments (9th ed.). New Jersey: Wiley.
Morville, P. (2004, June 21). Semantic Studios: Semantic Studios. Retrieved May 17, 2022, from http://semanticstudios.com/user_experience_design/
Neumann, U., & Majoros, A. (1998). Cognitive, Performance, and Systems Issues for Augmented Reality Applications in Manufacturing and Maintenance. Virtual Reality Annual International Symposium (pp. 4-11). Atlanta: IEEE. doi:10.1109/VRAIS.1998.658416
Oviatt, S. L., Coulston, R., & Lunsford, R. (2004). When Do We Interact Multimodally? Cognitive Load and Multimodal Communication Patterns. International Conference on Multimodal Interfaces (pp. 129-136). Pennsylvania: ACM Digital Library. doi:10.1145/1027933.1027957
Paas, F., Tuovinen, J. E., Tabbers, H., & Gerven, P. W. (2010). Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Cognitive Load Theory & Instructional Design, 38(1), 63-71. doi:10.1207/S15326985EP3801_8
Park, B. J., Hunt, S. J., Martin, C., Nadolski, G. J., Wood, B. J., & Gade, T. P. (2020). Augmented and Mixed Reality: Technologies for Enhancing the Future of IR. Journal of Vascular and Interventional Radiology, 31(7), 1074-1082. doi:10.1016/j.jvir.2019.09.020
Parveau, M., & Adda, M. (2018). 3iVClass: a new classification method for Virtual, Augmented and Mixed Realities. The 9th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN). 141, pp. 263-270. Leuven: Procedia Computer Science. doi:10.1016/j.procs.2018.10.180
Pastor, R., & Ferrer, L. (2009). An Improved Mathematical Program to Solve the Simple Assembly Line Balancing Problem. International Journal of Production Research, 47(11), 2943-2959. doi:10.1080/0020754070171 3832
Patel, A. D., Gallagher, A. G., Nicholson, W. J., & Cates, C. U. (2006). Learning Curves and Reliability Measures for Virtual Reality Simulation in the Performance Assessment of Carotid Angiography. Journal of the American College of Cardiology, 47(9), 1796-1802.
Potemin, I. S., Zhdanov, A., Bogdanov, N., Zhdanov, D., Livshits, I., & Wang, Y. (2018). Analysis of the Visual Perception Conflicts in Designing Mixed Reality Systems. Proceedings of the Optical Design and Testing VIII. 10815. Beijing: International Society for Optics and Photonics. doi:10.1117/12.2503397

Qian, L., Barthel, A., Johnson, A., Osgood, G., Kazanzides, P., Navab, N., & Fuerst, B. (2017). Comparison of Optical See-Through Head-Mounted Displays for Surgical Interventions with Object-Anchored 2D-Display. International Journal of Computer Assisted Radiology and Surgery, 12, 901-910. doi:10.1007/s11548-017-1564-y
Rokhsaritalemi, S., Niaraki, A. S., & Choi, S.-M. (2020). A Review on Mixed Reality: Current Trends, Challenges, and Prospects. Applied Sciences, 10(636), 1-26. doi:10.3390/app10020636
Rosenberg, W. v., Chanwimalueang, T., Adjei, T., Jaffer, U., Goverdovsky, V., & Mandic, D. P. (2017). Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Frontiers in Physiology, 8(360), 1-12. doi:10.3389/fphys.2017.00360
Russell, J. A. (1980). A Circumplex Model of Affect. Journal of Personality and Social Psychology, 39, 1161–1178.
Sanchez-Vives, M. V., & Slater, M. (2005). From Presence to Consciousness Through Virtual Reality. Nature Reviews Neuroscience, 6, 332–339. doi:10.1038/nrn1651
Sari, A. D., Suryoputro, M. R., Rochman, Y. A., Ulandari, S., & Puspawardhani, E. H. (2015). Usability Analysis of Laboratory Website Design to Improve Learning Process. 6th International Conference on Applied Human Factors and Ergonomics (pp. 5504-5511). Las Vegas: Elsevier. doi:10.1016/j.promfg.2015.07.703
Sauro, J., & Lewis, J. R. (2011). When Designing Usability Questionnaires, Does It Hurt to Be Positive? Vancouver: Proceedings of the International Conference on Human Factors in Computing Systems.
Savioja, P., Jarvinen, P., Karhela, T., Siltanen, P., & Woodward, C. (2007). Developing a Mobile, Service-Based Augmented Reality Tool for Modern Maintenance Work. International Conference on Virtual Reality (pp. 554–563). Beijing: Spinger. doi:10.1007/978-3-540-73335-5_60
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5), 1763-1768.
Sebrina, F., Diawati, L., & Cakravastia, A. (2011). Learning Curves in Automobile Assembly Line. International Conference on Industrial Engineering Theory, Applications and Practice, 16, pp. 1-7. Stuttgart. doi:10.13140/2.1.4363.6168
Sevinc, V., & Berkman, M. I. (2020). Psychometric Evaluation of Simulator Sickness Questionnaire and Its Variants as a Measure of Cybersickness in Consumer Virtual Environments. Applied Ergonomics, 82(102958), 1-12. doi:j.apergo.2019.102958
Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5(258), 1-17. doi:10.3389/fpubh.2017.00258
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A Healthy Heart is not a Metronome: an Integrative Review of the Heart's Anatomy and Heart Rate Variability. Frontiers in Psychology, 5(1040), 1-19. doi:10.3389/fpsyg.2014.01040
Shi, Y., Choi, E. H., Ruiz, N., Chen, F., & Taib, R. (2007). Galvanic Skin Response (GSR) as an Index of Cognitive Load. Human Factors in Computing Systems, 2651–2656. doi:10.1145/1240866.1241057
Shuhaiber, J. H. (2004). Augmented Reality in Surgery. The Archives of Surgery, 139(2), 170-174. doi:10.1001/archsurg.139.2.170
Slater, M. (2009). Place Illusion and Plausibility Can Lead to Realistic Behaviour in Immersive Virtual Environments. Philosophical Transactions of The Royal Society B Biological Sciences, 364(1535), 3549-3557. doi:10.1098/rstb.2009.0138
Sohn, D. (2011). Anatomy of Interaction Experience: Distinguishing Sensory, Semantic, and Behavioral Dimensions of Interactivity. New Media & Society, 13(8), 1320-1335. doi:10.1177/1461444811405806
Stanney, K. M., Kennedy, R. S., & Drexler, J. M. (1997). Cybersickness is Not Simulator Sickness. 41, pp. 1138-1142. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. doi:10.1177/107118139704 100292
Suthau, T., Vetter, M., Hassenpflug, P., Meinzer, H. P., & Hellwich, O. (2002). A Concept Work for Augmented Reality Visualisation Based on a Medical Application in Liver Surgery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), 34(5), 274-280.
Sutherland, I. E. (1968). A Head-Mounted Three Dimensional Display. AFIPS Joint Computer Conference (pp. 757-764). New York: The ACM Digital Library. doi:10.1145/1476589.1476686
Takatalo, J., Häkkinen, J., Kaistinen, J., & Nyman, G. (2009). Presence, Involvement, and Flow in Digital Games. In Evaluating User Experience in Games - Human-Computer Interaction Series (pp. 23-46). London: Springer. doi:10.1007/978-1-84882-963-3
Teigen, K. H. (1994). Yerkes-Dodson: A Law for All Seasons. Theory & Psychology, 4(4), 525-547. doi:10.1177/0959354394044004
Towne, D. M. (1985). Cognitive Workload in Fault Diagnosis. University of Southern California, Department or Psychology. Los Angeles: Behavioral Technology Laboratories.
Toyota Motor Corporation. (1989). Toyota 4A-FE,4A-GE Engine - Repair Manual. Japan: Toyota Motor Corporation.
Tran, T.-D., Kim, J., Ho, N.-H., Yang, H.-J., Pant, S., Kim, S.-H., & Lee, G.-S. (2021). Stress Analysis with Dimensions of Valence and Arousal in the Wild. Applied Sciences, 11(11), 1-13. doi:10.3390/app11115194
UQO Cyberpsychology Lab. (2004). Immersive Tendencies Questionnaire (ITQ). Gatineau: UQO Cyberpsychology Lab.
Usability.gov. (2020). User Experience Basics. Retrieved May 17, 2022, from https://www.usability.gov/what-and-why/user-experience.html
Veinott, E. S., & Kanki, B. G. (1995). Identifying Human Factors Issues in Aircraft Maintenance Operations. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 39, p. 950. SAGE Journals. doi:10.1177/154193129503901440
Vijaya, P. A., & Shivakumar, G. (2013). Galvanic Skin Response: A Physiological Sensor System for Affective Computing. International Journal of Machine Learning and Computing, 3(1), 31-34. doi:10.7763/IJMLC.2013.V3.267
Villarejo, M. V., Zapirain, B. G., & Zorrilla, A. M. (2012). A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee. Sensors, 12(5), 6075–6101. doi:10.3390/s120506075
Vorraber, W., Gasser, J., Webb, H., Neubacher, D., & Url, P. (2020). Assessing Augmented Reality in Production: Remote-Assisted Maintenance with Hololens. 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering. 88, pp. 139-144. Gulf of Naples: Procedia CIRP. doi:10.1016/j.procir.2020.05.025
Vovk, A., Wild, F., Guest, W., & Kuula, T. (2018). Simulator Sickness in Augmented Reality Training Using the Microsoft HoloLens. CHI Conference on Human Factors in Computing Systems, (pp. 1-9). Montreal. doi:10.1145/3173574.3173783
Walter, H., Li, R., Munafo, J., Curry, C., Peterson, N., & Stoffregen, T. (2019). A Brief Explanation of the Simulator Sickness Questionnaire (SSQ). APAL Coupling Study. doi:10.13020/XAMG-CS69
Wang, X., & Dunston, P. S. (2008). User Perspectives on Mixed Reality Tabletop Visualization for Face-to-Face Collaborative Design Review. Automation in Construction, 17(4), 399-412. doi:10.1016/j.autcon.2007.07.002
Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The Two General Activation Systems of Affect: Structural Findings, Evolutionary Considerations, and Psychobiological Evidence. Journal of Personality and Social Psychology, 76(5), 820-838. doi:10.1037/0022-3514.76.5.820
Watson, G., Curran, R., Butterfield, J., & Craig, C. (2008). The Effect of Using Animated Work Instructions Over Text and Static Graphics When Performing a Small Scale Engineering Assembly. In R. Curran, S. Y. Chou, & A. Trappey (Eds.), Collaborative Product and Service Life Cycle Management for a Sustainable World (pp. 541-550). London, United Kingdom: Springer. doi:10.1007/978-1-84800-972-1_51
Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M., & Preusche, C. (2013). An Augmented Reality Training Platform for Assembly and Maintenance Skills. Robotics and Autonomous Systems, 61(4), 398-403. doi:10.1016/j.robot.2012.09.013
Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence, 7, 225-240.
Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The Factor Structure of the Presence Questionnaire. Presence, 14(3), 298-312. doi:10.1162/105474605323384654
Zaeh, M. F., & Wiesbeck, M. (2008). A Model for Adaptively Generating Assembly Instructions Using State-Based Graphs. CIRP Conference on Manufacturing Systems (pp. 195-198). Tokyo: Springer. doi:10.1007/978-1-84800-267-8_39
Zeiss International. (2022). ZEISS Online Vision Screening. Retrieved May 31, 2022, from ZEISS: https://visionscreening.zeiss.com/en-INT
Zhao, H., Zhao, Q. H., & Ślusarczyk, B. (2019). Sustainability and Digitalization of Corporate Management Based on Augmented / Virtual Reality Tools Usage: China and Other World IT Companies’ Experience. Sustainability, 11, 1-17.
Zhu, J., Ong, S. K., & Nee, A. Y. (2014). A Context-Aware Augmented Reality System to Assist the Maintenance Operators. International Journal on Interactive Design and Manufacturing, 8(4), 293-304. doi:10.1007/s12008-013-0199-7

無法下載圖示 全文公開日期 2032/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE