簡易檢索 / 詳目顯示

研究生: 曾寶儀
Bao-Yi Zeng
論文名稱: 利用不同陽極處理製備之奈米氧化鋁薄膜及其微觀結構與機械性質之研究
Study on the microstructure and mechanical properties of nano-aluminum oxide films prepared via different anodizing processes
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳柏均
Po-Chun Chen
陳建光
Jem-Kun Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 陽極處理多孔性結構奈米壓痕機械性質
外文關鍵詞: anodic aluminum oxide, porous structure, nanoindentation, mechanical property
相關次數: 點閱:320下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用純度99.99%之鋁片,在低溫下進行二次陽極氧化處理後,可製得高孔隙率、規則分布以及均一奈米孔洞的陽極氧化鋁(Anodic Aluminum Oxide;AAO)薄膜,而陽極處理使用三種不同類型的電解液(硫酸、草酸及磷酸)製備AAO並且探討其機械性質與摩擦學行為。藉由調整電解液類型,以製備平均孔徑為20~270nm以及孔隙率為18%~41%之AAO模板;進而使用奈米壓痕機測得其機械性質,其中包括硬度值和摩擦係數。在硫酸系統中製備之AAO再經由奈米壓痕機測試,其施加之荷重分別為1000μN、5500μN、10000μN,為了使硬度測試之結果呈再現性,本實驗從1000μN以遞增荷重方式到10000μN,所獲得之負載-位移(P-D)曲線會隨施加之荷重越大,受表面粗糙度影響越小。原始之硫酸樣品與擴孔10及20分鐘後之硫酸樣品經測試後,其結果均顯示硬度會隨施加之荷重增加而增加,由微觀結構可推測當多孔性結構受到正向力(Normal force)往下擠壓,會導致筆直之孔壁崩塌,然而層層堆疊使材料局部結構密度上升,使其硬度值升高;若是使用固定之荷重分析硫酸系統之AAO,經擴孔處理後之AAO結構相對鬆散,獲得之硬度會隨擴孔時間增加而下降,而封孔處理後表面會覆蓋一層鱗片狀薄膜,導致其硬度降低,因此使用維克氏硬度機測試,結果顯示AAO封孔比擴孔後之硬度較高,表示以傳統之硬度測試方可得到硬度會隨孔洞越小而上升之趨勢。另外,在刮痕測試的部分,將硫酸系統之AAO經過擴孔與封孔處理後,皆以10000μN正向力進行單一軸向的刮痕測試,結果顯示摩擦係數會隨著孔徑增加而增大,表示當孔徑越大探針下針會越深,使探針移動的阻力增加,導致摩擦係數增大。最後,比較三種酸性電解液之陽極處理結果,結果指出,孔隙率以磷酸電解液最大,草酸電解液其次,硫酸電解液最低;由於大孔徑之結構較鬆散,使硬度隨著孔隙率增加而下降,而本實驗中草酸系統之硬度卻比硫酸系統高,是由於草酸系統製備之AAO表面存在應力殘留之缺陷,導致其硬度比其他兩者還高。不管是硬度還是摩擦係數,本實驗的結果趨勢與緻密薄膜有所差異,因此將可以代表多孔性結構獨特之機械性質。


In this study, an aluminum foil with purity 99.99% was used to conduct anodizing at 5℃ to obtain anodic aluminum oxide(AAO) films which have high porosity, and regular pore size distribution. In order to study mechanical properties and tribological behavior of AAO, it was manufactured in different electrolytes including sulfuric acid, oxalic acid and phosphoric acid, providing adjustable pore size (20nm ~ 270nm) and porosity (18% ~ 41%). Additionally, the AAO was manufactured by the sulfuric acid through widening and sealing treatment. The hardness and friction coefficient of AAOs were investigated by nanoindentation with normal forces 1000μN, 5500μN, and 10000μN, respectively. The results show that hardness increases with the applied loads because porous structure is pressed down by the normal force, which leads the straight pore wall to collapse, and makes the structure density increase partly. After AAO films were sealed, they were covered with a layer of scaly film, which caused the hardness of AAO to decrease. Therefore, the result showed that the hardness of AAO sealed for two hours was the highest via Vickers-hardness test. The consequent indicated that the hardness increased as the sealing time raised. According to the result of scratch test, the larger the pore size, the higher the coefficient of friction. Finally, in the literatures, the hardness decreased as the porosity increased generally, but the results indicate that AAO with the highest hardness was obtained in oxalic acid system, not sulfuric acid system. The reason is that residual stresses and defects exist in AAO surface, resulting in nonuniform pores. The mechanical properties of AAO found in our study show the unique features for porous structures.

摘 要 I ABSTRACT II 致 謝 III 目 錄 V 表目錄 VII 圖目錄 VIII 式目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2.1 陽極氧化鋁之成長機制 3 2.2 陽極氧化鋁之物理特性 9 2.3 陽極氧化鋁之應用 12 2.4 奈米壓痕之原理 16 2.4.1 Doerner and Nix理論模式 16 2.4.2 Oliver and Pharr理論模式 17 2.4.3 Berkovich探針校正與應用 21 第三章 實驗方法 25 3.1 實驗流程及參數 25 3.2 陽極氧化鋁之實驗步驟 31 3.2.1 基材的準備 31 3.2.2 鋁基材的電解拋光 31 3.2.3 第一次陽極氧化處理 32 3.2.4 去除氧化層 33 3.2.5 第二次陽極氧化處理 33 3.2.6 擴孔 33 3.2.7 封孔 33 3.3 實驗分析及儀器原理 35 3.3.1 場發射掃描式電子顯微鏡 35 3.3.2 X光繞射儀 35 3.3.3 奈米壓痕儀 36 3.3.4 維氏硬度計 38 3.3.5 場發射雙束型聚焦離子束顯微鏡 39 第四章 結果與討論 40 4.1 陽極氧化鋁之微觀結構 40 4.1.1 硫酸系統之AAO微觀結構 40 4.1.2 草酸系統之AAO微觀結構 42 4.1.3 磷酸系統之AAO微觀結構 43 4.1.4 陽極氧化鋁之孔隙率分析 45 4.2 陽極氧化鋁之奈米壓痕分析 47 4.2.1 奈米壓痕之硬度分析 47 4.2.2 維克氏硬度分析 54 4.2.3 草酸與磷酸系統 56 4.3 陽極氧化鋁之奈米刮痕分析 60 第五章 結論 63 參考文獻 64

[1] B. Weia, G. Meia, H. Liangb, Z. Qic, D. Zhanga, H. Shena, Z. Wanga, “Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors.” J. Power Sources, 385, 39-44, 2018.
[2] W. Yang, D. Xu, X. Yao, J. Wang, J. Chen, “Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy.” J. Alloys Compd., 745, 609-616, 2018.
[3] J. Čapek, D. Vojtěch, “Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.” Mater. Sci. Eng. C, 43, 494-501, 2014.
[4] P.G. Sheaby, R. Pinner, “The Surface Treatment and Finishing of Aluminum and Its Alloys.” sixth ed. Vol. 1 and 2, ASM International: Finishing Publication, 2001.
[5] C.A. Grubbs, “Anodizing of aluminum.” Met. Finish., 105, 397-412, 2007.
[6] G. Reiners, U. Beck, H.A. Jehn, “Decorative optical coatings.” Thin Solid Films, 253, 33-40, 1994.
[7] M.A. Zeeshan, S. Pané, S.K. Youn, E. Pellicer, S. Schuerle, J. Sort, S. Fusco, H. Gyu Park, B. J. Nelson, “Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation.” Adv. Funct. Mater., 23, 823-831, 2013.
[8] Y. Wang, L. Xia, J. Ding, N. Yuan, Y. Zhu, “Multi-rate Kalman Filter Design for Electric Vehicles Control based on Onboard Vision System with Uneven Time Delay.” Trib. Lett., 49, 431-436, 2013.
[9] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular.” J. Membr. Sci., 319, 192-198, 2008.
[10] Y. Choi, J. Hyeon, S. Bu, T. Bae, “Effects of anodizing voltages and corresponding current densities on self-ordering process of nanopores in porous anodic aluminas anodized in oxalic and sulfuric acids.” J. Korean Phys. Soc., 55, 835-840, 2009.
[11] S. Liu, S. Tang, H. Zhou, C. Fu, Z. Huang, H. Liu, Y. Kuang, “Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters.” J. Solid State Electrochem, 17, 1931-1938, 2013.
[12] W.J. Stępniowski, A. Nowak-Stępniowska, A. Presz, T. Czujko, R.A. Varin, “The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores.” Mater. Charact., 91, 1-9, 2014.
[13] P. Chowdhury, K. Raghuvaran, M. Krishnan, H.C. Barshilia, K. Rajam, “Effect of process parameters on growth rate and diameter of nano-porous alumina templates.” Bull. Mater. Sci., 34, 423-427, 2011.
[14] W.J. Stępniowski, Z. Bojar, “Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features.” Surf. Coat. Technol., 206, 265-272, 2011.
[15] N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, Z.Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions.” Appl. Phys. A, 95, 781-787,2009.
[16] L. Zaraska, G.D. Sulka, M. Jaskuła, “Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays.” Surf. Coat. Technol., 205, 2432-2437, 2010.
[17] G.F. Vander Voort, “Metallography Principles and Practice”, McGraw-Hill book
company, 1984.
[18] C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, C. B. Prater, “Nanowire Array Composites.” Sci., 263, 800-802, 1994.
[19] D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J.M. Xu, “Nonlithographic nano-wire arrays: fabrication, physics, and device applications.” Trans. Electron. Dev., 43, 1646-1658, 1996.
[20] S. Setoh, A. Miyata, Sci. Inst. Phys. Chem. Res., Tokyo, 2772, 1932.
[21] L. Young, “Anodic oxide films”, Academic Press, New York, 1961.
[22] J.L. Chen, Y.H. Kuan, T.H. Li, Y.S. Chi, “Rapidly fabrication of plasmonic structural color thin films through AAO process in an alkaline solution.” Surf. Coat. Technol., 319, 170-181,2017
[23] C.L. Liao, C.W. Chu, K.Z. Fung, I.C. Leu, “Fabrication of nanoporous metal electrode by two-step replication technique.” J. Alloy Compd., 441, 1-6, 2007.
[24] D.H. Choi, P.S. Lee, W. Hwang, K.H. Lee, H.C. Park, “Measurement of the pore sizes for anodic aluminum oxide (AAO).” Cur. Appl. Phys., 6S1, 125-129, 2006.
[25] H. Masuda, K. Yada, A. Osaka, “Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution.” J. J. Appl. Phys., 37, 1340-1342, 1998.
[26] K.Y. Ng, Y. Lin, A.H.W. Ngan, “Deformation of anodic aluminum oxide nano-honeycombs during nanoindentation.” Acta Mater. 57, 2710-2720, 2009.
[27] A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina.” J. Appl. Phys., 84, 6023-6026, 1998.
[28] G.D. Sulkaa, W.J. Stepniowski, “Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures.” Electrochim. Acta, 54, 3683-3691, 2009.
[29] K.M. Chahrour, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, W. Maryam, M.A. Ahmad, M. Bououdina, “Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis.” Superlattices Microstruct., 88, 489-500, 2015.
[30] W.J. Stępniowskia, A. Nowak-Stępniowska, A. Presz, T. Czujko, R.A. Varin, “The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores.” Mater. Charact., 91, 1-9, 2014.
[31] R.H. Fernando, “Nanocomposites and nanostructured coatings: recent advancements.” Nanotechnol. Appl. Coat., 1, 2-21, 2009.
[32] C.W. Hun, C.C. Chang, S.H. Chen, C.C. Chen, A. Fang, Y.L. Kuo, “Transparent sapphire substrates with tunable optical properties by decorating with nanometric oxide on porous anodic aluminum oxide patterns.” Ceram. Int., 44, 10898-10906, 2018.
[33] O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications.” Nano Lett., 8, 2638-2642, 2008.
[34] J. Zhu, Z.F. Yu, G.F. Burkhard, C.M. Hsu, S.T. Connor, Y.Q. Xu, Q. Wang, M. McGehee, S.H. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays.” Nano Lett., 9, 279-282, 2009.
[35] N. Tsyntsaru, B. Kavas, J. Sort, M. Urgen, J.-P. Celis, “Mechanical and frictional behaviour of nano-porous anodized Aluminium.” Mater. Chem. Phys., 148, 887-895, 2014.
[36] L. Vojkuvka, A. Santos, J. Pallarès, J. Ferré-Borrull, L.F. Marsal, J.P. Celis, “On the mechanical properties of nanoporous anodized alumina by nanoindentation and sliding tests.” Surf. Coat. Technol., 206, 2115-2124, 2012.
[37] K.S. Chen, T.C. Chen, K.S. Ou, “Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements: residual stresses, substrate effect, and creep.” Thin Solid Films, 516, 1931-1940, 2008.
[38] Y.G. Jung, B.R. Lawn, M. Martyniuk, H. Huang, X.Z. Hu, “Evaluation of elastic modulus and hardness of thin films by nanoindentation.” J. Mater. Res., 19 ,10, 3076-3080, 2004.
[39] M. Takaya, K. Hashimoto, Y. Toda, M. Maejima, “Novel tribological properties of anodic oxide coating of aluminum impregnated with iodine compound.” Surf. Coat. Technol., 169, 160-162, 2003.
[40] J.P. Tu, C.X. Jiang, S.Y. Guo, L.P. Zhu, F.M. Fu, X.B. Zhao, “Friction and wear properties of aligned film of amorphous carbon nanorods on anodic aluminum oxide template in vacuum.” Surf. Coat. Technol., 198, 464-468, 2005.
[41] S.Z. Chu, S. Inoue, K. Wada, S. Hishita, K. Kurashima, “Self‐Organized Nanoporous Anodic Titania Films and Ordered Titania Nanodots/Nanorods on Glass.” Adv. Funct. Mater., 15, 1343-1349, 2005.
[42] O.K. Varghese, D.W. Gong, W.R. Dreschel, K.G. Ong, C.A. Grimes, “Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors.” Sens. Actuator B Chem., 94, 27-35, 2003.
[43] M. Franco, S. Anoop, R. Uma Rami, A.K. Sharma, “Porous layer characterization of anodized and black-anodized aluminum by electrochemical studies.” Int. Scholarly Res. Corrosion, 1-12, 2012.
[44] M.A. Zeeshan, S. Pané, S.K. Youn, E. Pellicer, S. Schuerle, J. Sort, S. Fusco, H. Gyu Park, B.J. Nelson, “Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation.” Adv. Funct. Mater., 23, 823-831, 2013.
[45] S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Söderlund,C. R. Martin, “Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations.” Sci., 296, 2198-2200, 2002.
[46] S.H. Chen, C.C. Chen, Z.P. Luo, C.G. Chao, “Fabrication and characterization of eutectic bismuth–tin (Bi–Sn) nanowires.” Mater. Lett., 63, 1165-1168, 2009.
[47] P.L. Chen, C.T. Kuo, T.G. Tsai, B.W. Wu, C.C. Hsu, F.M. Pan, “Self-organized titanium oxide nanodot arrays by electrochemical anodization.” Appl. Phys. Lett., 82, 2796-2798, 2003.
[48] G.S. Lee, J. Choi, Y.C. Choi, S.D. Bu, Y.Z. Lee, “Tribological effects of pores on an anodized Al alloy surface as lubricant reservoir.” Cur. Appl. Phys., 11, S182-S186, 2011.
[49] T.H. Fang, T.H. Wang, S.H. Kang, C.H. Chuang, “Indentation deformation of mesoporous anodic aluminum oxide.” Cur. Appl. Phys., 9, 880-883, 2009.
[50] B. Najma, A.K. Kasi, J.K. Kasi, A. Akbar, S.M.A. Bokhari, I.R. Stroe, “ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay.” Appl. Surf. Sci., 448, 104-114, 2018.
[51] N.D. Hoa, N.V. Quy, Y. Cho, D. Kim, “An ammonia gas sensor based on non-catalytically synthesized carbon nanotubes on an anodic aluminum oxide template.” Sens. Actuators B, 127, 447-454, 2007.
[52] A.M. Awad, O.S. Shehata, F.E. Heakal, “Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution.” Appl. Surf. Sci., 359, 939-947, 2015.
[53] G.S. Lee, Y.H. Shin, J.M. Kim, T.S. Kim, Y.Z. Lee, “Frictional characteristics of nano-scale mesoporous SiO2 thin film formed by sol-gel and self-assembly method.” J. Nanosci. Nanotechnol., 9, 7340-7344, 2009.
[54] C.X. Jiang, J.P. Tu, S.Y. Guo, M.F. Fu, X.B. Zhao, “Friction properties of oil-infiltrated porous AAO film on an aluminum substrate.” Acta Metall. Sin., 18, 249-253, 2005.
[55] S.Y. Yang, I. Ryu, H.Y. Kim, J.K. Kim, S.K. Jang, T.P. Russell, “Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses.” Adv. Mater., 18, 709-712, 2006.
[56] H.U. Osmanbeyoglu, T.B. Hur, H.K. Kim, “Thin alumina nanoporous membranes for similar size biomolecule separation.” J. Membr. Sci., 343, 1-6, 2009.
[57] J.L. Snyder, A. Clark, D.Z. Fang, T.R. Gaborski, C.C. Striemer, P.M. Fauchet, J.L. McGrath, “An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes.” J. Membr. Sci., 369, 119-129, 2011.
[58] S. Altuntas, F. Buyukserin, “Fabrication and characterization of conductive anodic aluminum oxide substrates.” Appl. Surf. Sci., 318, 290-296, 2014.
[59] A. Belwalkar, E. Grasing, W.V. Geertruyden, Z. Huang, W.Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes.” J. Membr. Sci., 319, 192-198, 2008.
[60] H. Hertz, “Ueber die Ber ü hrung Fester Elastischer Körper.”, J. Reine und Angewandte Mathematik, 92, 156-171, 1882.
[61] N.A. Stilwell, D. Tabor, “Elastic Recover of Conical Indentations.” Proc. Phys. Soc. London., 78, 169-179, 1961.
[62] I.N. Sneddon., “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile.” Int. J. Engng. Sci., 3, 47-57, 1965.
[63] M.F. Doerner, W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments.” J. Mater. Res., 1, 601-609, 1986.
[64] W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic
modulus using load and displacement sensing indentation experiments.” J. Mater. Res., 7, 1564-1583, 1992.
[65] K.W. McElhaney, J.J. Vlassak, W.D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments.” J. Mater. Res., 1300-1306, 1998.
[66] A.C. Fischer-Cripps, “Contact Mechanics.” Nanoindentation, 1-19, 2011.
[67] S.P. Baker, “Between nanoindentation and scanning force microscopy: measuring mec
hanical properties in the nanometer regime.” Thin Solid Films, 289-296, 1997.
[68] NEWS, “Nanoindenter Installed at SSW”, 2014.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE