簡易檢索 / 詳目顯示

研究生: 陳敬文
Ching-Wen Chen
論文名稱: 切削環境條件於繞切Ti-6Al-4V合金之材料強化、刀具磨耗與熱軟化效應
Effects of cutting environments on material strengthening, tool wear and thermal softening in routing of Ti-6Al-4V alloy
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 郭俊良
Chun-Liang Kuo
林原慶
Yuan-Ching Lin
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: Ti-6Al-4V繞切加工材料強度切削力切削溫度熱軟化效應刀具磨耗統計分析
外文關鍵詞: Ti-6Al-4V alloy, routing, material strength, cutting force, cutting temperature, thermal softening, tool wear, statistical analysis
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鈦合金(Ti-6Al-4V)為先進之航太材料,於常溫下具有高強度(950 MPa)且具有優異之抗潛變(900 MPa)與高溫強度(800 MPa @ 400 °C),但於實務應用上為一難切削材料。Ti-6Al-4V合金擁有低彈性模數(~120 GPa),於切削過程中造成刀具之反覆負載與疲勞破壞。低熱傳導係數(~7.5 W/m・k)造成切削熱聚集於剪切區附近,導致切刃軟化。本研究以乾式切削、溢流切削與極低溫切削環境輔助繞切鈦合金材料,實驗使用碳化鎢與類鑽碳鍍層之球刃刀具材料,耦合0.2-0.45 mm/rev之進給率,於固定40 m/min之切削速度及1 mm之切削深度,進行繞切實驗。透過基礎力學理論計算材料強度,並由實驗驗證操作參數與切削力、切削溫度、刀具磨耗與材料次表面硬度之物理效應。研究結果顯示,碳化鎢刀具於乾式切削耦合0.2 mm/rev進給率產生之切削力比類鑽碳鍍層刀具可降低14.6%,起因於材料產生熱軟化效應。當提高搭配進給率至0.45 mm/rev時,類鑽碳鍍層刀具產生熱擴散磨耗與侵蝕磨耗,破壞刀具幾何因而提高切削力,促使加工表面產生應變硬化而提高材料強度,直至切刃之破壞。類鑽碳鍍層刀具於溢流切削環境耦合0.2 mm/rev進給率時,鍍層之潤滑與散熱優勢可以維持,相比碳化鎢刀具可降低33.0%之切削力與22.9%之刃口磨耗。當使用液態氮降溫於切削切刃時,液態氮之冷卻效果可抑制切刃熱軟化與刃口之磨耗,進而降低切削力,維持低材料強度。但切削距離達一臨界值時,液態氮之降溫效應無法抑制刀具磨耗,造成切刃之破壞。


Ti-6Al-4V is an advanced aerospace material with high strength (950 MPa) at room temperature, excellent creep resistance (900 MPa) and high-temperature strength (800 MPa @ 400 °C), but it's a difficult-to-cut material in practical application. The low modulus of elasticity (~120 GPa) of Ti-6Al-4V causes the tool to be repeatedly loaded during the cutting process, resulting in fatigue damage. Low thermal conductivity (~7.5 W/m・k) causes cutting heat to accumulate in the shear zone, resulting in softening of the cutting edge. In this research, dry, flooding and cryogenic cutting environments are used to assist routing of Ti-6Al-4V material. The experiment uses ball end mill with tungsten carbide and diamond-like carbon coatings, couples the feed rate of 0.2, 0.3 and 0.45 mm/rev. The cutting speed of 40 m/min and the cutting depth of 1 mm are fixed to process the material. And the evolution of cutting force, cutting temperature and tool wear is recorded during the process. The material strength is calculated through basic mechanics theory, and the physical effects of operating parameters and cutting force, cutting temperature, tool wear and material subsurface hardness are verified by experiments. The research results show that the cutting force generated by coupling 0.2 mm/rev of tungsten carbide tools in a dry environment can be reduced by 14.6% compared with that of DLC-coated tools. When the feed rate is increased to 0.3 mm/rev, the thermal softening effect of the material will reduce the strength of the material. When combined with a high feed rate of 0.45 mm/rev, the diffusion wear and erosion wear of the DLC-coated tool due to cutting heat will promote strain hardening on the machined surface, increase the strength of the material and cause damage to the cutting edge. When the diamond-like carbon coating tool is coupled to 0.2 mm/rev in the flooding cutting environment, it can maintain the lubrication and heat dissipation advantages of the diamond-like carbon coating. Compared with the tungsten carbide tool, it can reduce the cutting force by 33.0% and the flank wear by 22.9%. When liquid nitrogen is used to cool the cutting edge, the flushing effect of liquid nitrogen can inhibit the thermal softening of the cutting edge and wear of the cutting edge, thereby reducing the cutting force and maintaining low material strength. However, when the cutting distance reaches a critical value, the cooling effect of liquid nitrogen cannot suppress the wear of the tool, resulting in damage to the cutting edge.

目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 符號定義 XIII 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 Ti-6Al-4V之材料特性 3 2.2 刀具材料選用與鍍層之優勢 3 2.2.1 碳化鎢刀具 3 2.2.2 類鑽碳鍍層 4 2.3 切削環境之優勢 4 2.4 切削Ti-6Al-4V之刀具磨耗 6 2.4.1 碳化鎢刀具 6 2.4.2 類鑽碳刀具 7 2.4.3 擴散磨耗(diffusion wear) 7 2.4.4 缺口磨耗(notch wear) 8 2.5 Ti-6Al-4V加工之挑戰 9 第三章 研究方法 10 3.1 研究流程 10 3.2 切削浸潤角之計算與切削係數之推導 12 第四章 實驗工作 15 4.1 實驗材料 15 4.2 實驗刀具 16 4.3 實驗設置 17 4.4 切削力量測 19 4.5 刀具磨耗量測 20 4.6 切削溫度場量測 21 4.7 硬度量測 22 4.8 元素量測 22 4.9 實驗設計 23 4.9.1 Phase A 乾式與溢流切削環境 23 4.9.2 Phase B 極低溫加工環境 24 第五章 實驗結果與討論 25 5.1 切向、徑向與軸向材料之強化機制 25 5.2 切削力分析 31 5.2.1 乾切削環境 31 5.2.2 溢流切削環境 33 5.2.3 極低溫切削環境 34 5.3 切削溫度分析 36 5.3.1 乾切削環境 36 5.3.2 溢流切削環境 38 5.3.3 極低溫切削環境 39 5.3.4 切削溫度對切削力之效應 40 5.4 刀具磨耗分析 42 5.4.1 乾切削環境 42 5.4.2 溢流切削環境 46 5.4.3 極低溫切削環境 49 5.5 乾切削環境之熱軟化效應 53 5.6 切削刀具之金屬元素遷移效應 55 5.7 加工工作物之金屬元素遷移效應 56 第六章 結論與未來展望 58 6.1 文獻回顧總結 58 6.2 研究結果總結 59 6.2.1 乾切削環境使用碳化鎢刀具之效應 59 6.2.2 乾切削環境使用類鑽碳鍍層刀具之效應 59 6.2.3 溢流切削環境使用碳化鎢刀具之效應 60 6.2.4 溢流切削環境使用類鑽碳鍍層刀具之效應 60 6.2.5 極低溫切削環境使用類鑽碳鍍層刀具之效應 61 6.3 未來展望 62 參考文獻 63 附錄一 學術榮譽與研究著作 69 附錄二 實驗CNC加工程式碼 71

[1] N. Yumak, K. Aslantaş, A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters, Journal of Materials Research and Technology, 9 (2020) 15360-15380.
[2] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A, 213 (1996) 103-114.
[3] F.H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, ASM International (2015).
[4] G.S. Upadhyaya, 16 - Fine Grained and Functionally Graded Cemented Carbides, in: G.S. Upadhyaya (Ed.) Cemented Tungsten Carbides, William Andrew Publishing, Westwood, NJ, (1998) 345-368.
[5] J. Gurland, P. Bardzil, Relation of Strength, Composition, and Grain Size of Sintered WC-Co Alloys, The Journal of The Minerals, 7 (1955) 311-315.
[6] E.O. Ezugwu, J. Bonney, Y. Yamane, An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology, 134 (2003) 233-253.
[7] H.A.O. Cen, D. Fu-ming, G. Zhenhai, B. Xiang, W. Shuang, Study of preparation and cutting performance of a chemical vapor deposition diamond coated cutting tool, Thin Solid Films, 771 (2023) 139801.
[8] P. Sahoo, V.K. Singh, K. Patra, Influences of tribological and mechanical properties of (Ti /Al)N and diamond like carbon coated tungsten carbide tool on machining and dynamic stability in micro milling of Ti6Al4V, Journal of Manufacturing Processes, 85 (2023) 915-934.
[9] I. Bellón Vallinot, E. de la Guerra Ochoa, J. Echávarri Otero, E. Chacón Tanarro, I. Fernández Martínez, J.A. Santiago Varela, Individual and combined effects of introducing DLC coating and textured surfaces in lubricated contacts, Tribology International, 151 (2020) 106440.
[10] R. Kovacevic, C. Cherukuthota, M. Mazurkiewicz, High pressure waterjet cooling/lubrication to improve machining efficiency in milling, International Journal of Machine Tools and Manufacture, 35 (1995) 1459-1473.
[11] E.M. Trent, P.K. Wright, Chapter 10 - Coolants and lubricants, in: E.M. Trent, P.K. Wright (Eds.) Metal Cutting (Fourth Edition), Butterworth-Heinemann, Woburn, (2000) 311-337.
[12] A.R. Machado, J. Wallbank, The effect of extremely low lubricant volumes in machining, Wear, 210 (1997) 76-82.
[13] G. Byrne, D. Dornfeld, B. Denkena, Advancing Cutting Technology, CIRP Annals, 52 (2003) 483-507.
[14] S.Y. Hong, Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V, International Journal of Machine Tools and Manufacture, 41 (2001) 1417-1437.
[15] A. Machado, J. Wallbank, I. Pashby, E. Ezugwu, Tool performance and chip control when machining Ti6A14V and Inconel 901 using high pressure coolant supply, Machining Science and Technology, 2 (1998) 1-12.
[16] S. Palanisamy, S.D. McDonald, M.S. Dargusch, Effects of coolant pressure on chip formation while turning Ti6Al4V alloy, International Journal of Machine Tools and Manufacture, 49 (2009) 739-743.
[17] E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys, International Journal of Machine Tools and Manufacture, 45 (2005) 1353-1367.
[18] Y. Su, L. Li, G. Wang, X. Zhong, Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool, Journal of Manufacturing Processes, 34 (2018) 706-712.
[19] M.A. Suhaimi, G.-D. Yang, K.-H. Park, M.J. Hisam, S. Sharif, D.-W. Kim, Effect of Cryogenic Machining for Titanium Alloy Based on Indirect, Internal and External Spray System, Procedia Manufacturing, 17 (2018) 158-165.
[20] M.K. Gupta, Q. Song, Z. Liu, M. Sarikaya, M. Mia, M. Jamil, A.K. Singla, A. Bansal, D.Y. Pimenov, M. Kuntoğlu, Tribological performance based machinability investigations in cryogenic cooling assisted turning of α-β titanium Alloy, Tribology International, 160 (2021) 107032.
[21] M.A. Khan, S.H. Imran Jaffery, M. Khan, M. Alruqi, Machinability analysis of Ti-6Al-4V under cryogenic condition, Journal of Materials Research and Technology, 25 (2023) 2204-2226.
[22] F. Wang, K. Ji, Z. Guo, Microstructural analysis of failure progression for coated carbide tools during high-speed milling of Ti-6Al-4V, Wear, 456-457 (2020) 203356.
[23] M.J. Bermingham, J. Kirsch, S. Sun, S. Palanisamy, M.S. Dargusch, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, International Journal of Machine Tools and Manufacture, 51 (2011) 500-511.
[24] M. Armendia, A. Garay, L.M. Iriarte, P.J. Arrazola, Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools, Journal of Materials Processing Technology, 210 (2010) 197-203.
[25] M. Ziberov, D. de Oliveira, M.B. da Silva, W.N.P. Hung, Wear of TiAlN and DLC coated microtools in micromilling of Ti-6Al-4V alloy, Journal of Manufacturing Processes, 56 (2020) 337-349.
[26] A. Banerji, S. Bhowmick, A.T. Alpas, High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys, Surface and Coatings Technology, 241 (2014) 93-104.
[27] V. Chenrayan, C. Manivannan, K. Shahapurkar, A. Krishna, V. Tirth, A. Algahtani, I. Alarifi, Machinability Performance Investigation of TiAlN-, DLC-, and CNT-Coated Tools during Turning of Difficult-to-Cut Materials, Journal of Nanomaterials, 2022 (2022) 15.
[28] F. Klocke, A. Kuchle, Manufacturing processes, Springer, 2009.
[29] T.N. Loladze, Of the Theory of Diffusion Wear, CIRP Annals, 30 (1981) 71-76.
[30] W. Min, W. Min, Z. Youzhen, Diffusion wear in milling titanium alloys, Materials Science and Technology, 4 (1988) 548-553.
[31] M.J. Bermingham, S. Palanisamy, M.S. Dargusch, Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V, International Journal of Machine Tools and Manufacture, 62 (2012) 76-87.
[32] M.S.H. Bhuiyan, I.A. Choudhury, 13.22 - Review of Sensor Applications in Tool Condition Monitoring in Machining, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.) Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp. 539-569.
[33] M.S. Kasim, C.H. Che Haron, J.A. Ghani, M.A. Sulaiman, M.Z.A. Yazid, Wear mechanism and notch wear location prediction model in ball nose end milling of Inconel 718, Wear, 302 (2013) 1171-1179.
[34] G. Gao, Z. Xia, T. Su, D. Xiang, B. Zhao, Cutting force model of longitudinal-torsional ultrasonic-assisted milling Ti-6Al-4V based on tool flank wear, Journal of Materials Processing Technology, 291 (2021).
[35] E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability - a review, Journal of Materials Processing Technology, 68 (1997) 262-274.
[36] R. Lindvall, F. Lenrick, H. Persson, R. M'Saoubi, J.-E. Ståhl, V. Bushlya, Performance and wear mechanisms of PCD and pcBN cutting tools during machining titanium alloy Ti6Al4V, Wear, 454-455 (2020) 203329.
[37] B. Hariprasad, S.J. Selvakumar, D. Samuel Raj, Effect of cutting edge radius on end milling Ti–6Al–4V under minimum quantity cooling lubrication – Chip morphology and surface integrity study, Wear, 498-499 (2022) 204307.
[38] K. Gutzeit, G. Bulun, G. Stelzer, B. Kirsch, J.r. Seewig, J.C. Aurich, Investigation of the surface integrity when cryogenic milling of Ti-6Al-4V using a sub-zero metalworking fluid, Procedia CIRP, 108 (2022) 25-30.
[39] F. Wang, Y. Wang, H. Liu, Tool wear behavior of thermal-mechanical effect for milling Ti-6Al-4V alloy in cryogenic, The International Journal of Advanced Manufacturing Technology, 94 (2017) 2077-2088.
[40] P. Krishnan G, S. P, D. Samuel Raj, S. Hussain, V. Ravi Shankar, N. Raj, Optimization of jet position and investigation of the effects of multijet MQCL during end milling of Ti-6Al-4V, Journal of Manufacturing Processes, 64 (2021) 392-408.
[41] E.T. Akinlabi, I. Mathoho, M.P. Mubiayi, C. Mbohwa, M.E. Makhatha, Effect of process parameters on surface roughness during dry and flood milling of Ti-6A-l4V, 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), (2018) 144-147.
[42] M. Jamil, W. Zhao, N. He, M.K. Gupta, M. Sarikaya, A.M. Khan, S.M. R, S. Siengchin, D.Y. Pimenov, Sustainable milling of Ti–6Al–4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment, Journal of Cleaner Production, 281 (2021) 125347.
[43] R. Davis, A. Singh, R.M. Sabino, R.B.D. Pereira, K. Popat, P. Soares, M.J. Jackson, Performance Investigation of Cryo-treated End Mill on the Mechanical and in vitro behavior of Hybrid-lubri-coolant-milled Ti-6Al-4V alloy, Journal of Manufacturing Processes, 71 (2021) 472-488.
[44] K.-H. Park, G.-D. Yang, M.A. Suhaimi, D.Y. Lee, T.-G. Kim, D.-W. Kim, S.-W. Lee, The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V, Journal of Mechanical Science and Technology, 29 (2015) 5121-5126.
[45] C. Nan, D. Liu, Analytical Calculation of Cutting Forces in Ball-End Milling with Inclination Angle, Journal of Manufacturing and Materials Processing, 2 (2018) 35-46.
[46] M.J. Donachie, Titanium: A Technical Guide, 2nd Edition, ASM International, 2000.
[47] M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Mater Sci Eng C Mater Biol Appl, 102 (2019) 844-862.
[48] Q.L. Niu, X.H. Zheng, W.W. Ming, M. Chen, Friction and Wear Performance of Titanium Alloys against Tungsten Carbide under Dry Sliding and Water Lubrication, Tribology Transactions, 56 (2013) 101-108.
[49] A. Grill, Diamond-like carbon: state of the art, Diamond and Related Materials, 8 (1999) 428-434.
[50] I.O.f. Standardization, ISO 8688-1 : Tool Life Testing in Milling. Part 1 : Face Milling, ISO, 1989.

無法下載圖示 全文公開日期 2025/07/25 (校內網路)
全文公開日期 2025/07/25 (校外網路)
全文公開日期 2025/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE