簡易檢索 / 詳目顯示

研究生: Cathlene Roi Mongaya Jose
Cathlene Roi Mongaya Jose
論文名稱: 生物廢棄物衍生角蛋白增強幾丁聚醣氣凝膠與碳介質層於奈米磨擦發電之研究
Development of biowaste-derived keratin-enhanced chitosan aerogel with carbon intermediate layers for high performance triboelectric nanogenerators and its applications
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 吳志明
Jyh-Ming Wu
鄭國彬
Kou-Bin Cheng
張棋榕
Chi-Jung Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 98
中文關鍵詞: 角蛋白幾丁聚醣氣凝膠中間層摩擦奈米發電機
外文關鍵詞: Keratin, Chitosan, Aerogel, Intermediate Layer, Triboelectric Nanogenerator
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著環保議題的崛起,發電技術備受關注,可再利用廢料逐漸取代高污染廢料的使用。摩擦奈米發電機(TENG)在小型設備和傳感器供電領域取得了優異的進展,具備簡便、柔性和環保等優勢。為了充分發揮其在市場上的潛力,本研究提出通過提高元件的電荷生成和電荷保留能力以提高電荷密度,提升了 TENG 的摩擦電輸出、耐用性和可靠性。

首先,我們設計並製作一種新穎且可持續的摩擦電材料。 我們觀察到富含角蛋白的材料(例如皮膚、頭髮和毛皮)已被研究為摩擦電系列中最具正電性的材料之一。 在這項研究中,透過將羽毛中提取的角蛋白摻入幾丁聚醣中,獲得了氣凝膠形式的完全生物廢物衍生均質摩擦電層,從而實現了更實用和可複制的方法。隨後研究了所開發的 CK-TENG 裝置的摩擦能量收集特性。結果表明,與無角蛋白的TENG相比,輸出電壓提高了375%,在 6N 的作用力下輸出電壓高達322 V,並產生了14.4 W/m2的高功率密度和超過8000次循環的優異循環穩定性,這對於實際應用至關重要。我們還研究了所開發設備在實際應用中的潛在適用性,結果表明,它可以在6 N的作用力下點亮超過250個LED、啟動LCD設備,並且對電容器充電。

其次,透過添加高介電常數和高陷阱電荷的碳膜作為電荷存儲和阻擋層對CK-TENG進行了改進,使元件的電壓輸出提高了46%至470 V,功率密度提高了60%至 23.1 瓦/平方米。 它能夠在應用中展示出更高的性能,例如更快的電容器充電速率以及提供 LCD 和 LED 設備更快的開啟時間。 它還能夠從聲波中收集能量,並對握力監測表現出高靈敏度。在 CK-TENG 中引入碳中間層被證明是提高摩擦電性能的一種簡單且低成本的方法。

這項研究為角蛋白和生物廢物衍生材料及其在TENG中使用碳膜作為中間層進行綠色能源收集、同時再利用廢物能源鋪墊了道路。同時強調了TENG的耐用性、穩定性和潛在可擴展性,並廣泛應用於收集環境能量、鞋式發電機到健康監測設備等領域。


Environmental conservation efforts are pushing for energy generation technologies that refrain from the use of highly polluting fuels and promote the reuse of waste materials. Advances in triboelectric nanogenerators (TENGs) have seen progress in harvesting energy from ambient mechanical sources and powering small devices and sensors while being compact, flexible, biocompatible, and eco-friendly. To help fully realize its potential in the market, this study enhances the triboelectric output, durability, and reliability of TENGs through the strategy of improving its charge density by increasing the charge generation and charge retention capability of the device.

Firstly, a novel and sustainable triboelectric material was designed and fabricated. It was observed that keratin-rich materials such as skin, hair, and fur have been studied to be some of the most positive materials in the triboelectric series. In this study, a more practical and replicable approach is achieved by incorporating extracted keratin from feathers into chitosan to obtain a completely biowaste-derived and homogenous triboelectric layer in aerogel form. Then, the triboelectric energy harvesting property of the developed CK-TENG device was investigated. The findings showed that the output voltage was improved by 375% compared to the TENG without keratin, with values reaching up to 322 V under an applied force of 6 N. It also produced a high power density of 14.4 W/m2 and excellent cyclic stability for more than 8000 cycles which are crucial for real applications. The potential applications of the developed device were also studied and the results showed that it can turn on over 250 LEDs, display an LCD device, and charge capacitors under an applied force of 6 N. Moreover, it was successful in harvesting energy from waste vibration, from acoustic energy, and as a shoe generator, and the electrical output was utilized to power electronic devices.

Secondly, the CK-TENG was modified through the addition of a high dielectric constant and high charge trap carbon film as a charge storage and blocking layer, which increased the device voltage output by 46% to 470 V and the power density by 60% to 23.1 W/m2. It was able to demonstrate improved performance in applications such as faster charging rates in charging capacitors and faster turn-on time for powering LCD and LED devices. It was also able to harvest energy from acoustic energy and show high sensitivity for grip strength monitoring. The introduction of the carbon intermediate layer in the CK-TENG showed to be a simple and low cost method to improving triboelectric performance.

This work paves the way for keratin and biowaste-derived materials and the use of carbon film intermediate layers in TENGs for green energy harvesting and simultaneous waste energy utilization. It also highlights the durability, stability, and potential scalability of the TENG for a wide range of real applications, from ambient energy harvesting and shoe generators to health monitoring devices.

Abstract I Acknowledgements IV Table of Contents V List of Figures VII List of Tables X Chapter 1 : Introduction 1 1.1 Research Background 1 1.2 Research Objectives 3 1.3 Experimental Flow Chart 5 Chapter 2 : Literature Review 7 2.1 Green Energy Transition 7 2.2 Energy Harvesting 8 2.3 Triboelectric Nanogenerators 9 2.3.1 General Mechanism 10 2.3.2 Main Working Modes 11 2.3.3 Applications 12 2.3.5 Challenges in the Industrialization of TENGs 14 2.3.6 Strategies to Improve Triboelectric Charge Density and Performance 16 2.4 Material Selection and the Triboelectric Series 17 2.4.1 Biowaste-Derived Triboelectric Materials 19 2.4.2 Keratin-rich Triboelectric Materials 21 2.4.3 Keratin as a Triboelectric Material 27 2.5 Material Structure 30 2.6 Device Structure 31 2.6.1 Conventional Structure 31 2.6.2 Addition of an Intermediate Layer 32 2.6.3 Carbon-based Intermediate Layers 37 Chapter 3 : Keratin-enhanced chitosan aerogel as a biowaste-derived triboelectric nanogenerator material for green energy harvesting 39 3.1 Experimental Procedure 39 3.1.1 Materials 39 3.1.2 Keratin Extraction from Waste Feathers 39 3.1.3 CK Aerogel Fabrication 40 3.1.4 CK-TENG Device Structure and Assembly 41 3.1.5 Characterization and Electrical Tests 41 3.2 Results and Discussion 42 3.2.1 CK Aerogel Properties 42 3.2.2 CK-TENG Mechanism 47 3.2.3 CK-TENG Electrical Performance 49 3.2.4 CK-TENG Applications 51 3.3 Summary 58 Chapter 4 : Carbon composite film as a charge storage and charge recombination blocking intermediate layer for high performance triboelectric nanogenerators 59 4.1 Experimental Procedure 59 4.1.1 Materials 59 4.1.2 CKI-TENG Device Structure and Assembly 59 4.2.3 Characterization and Electrical Tests 59 4.2 Results and Discussion 60 4.2.1 CKI-TENG Mechanism 60 4.2.2 CKI-TENG Electrical Performance 62 4.2.3 CKI-TENG Applications 65 4.3 Summary 69 Chapter 5 : Conclusion 70 Chapter 6 : References 71

1. IEA, Net Zero by 2050: A Roadmap for the Global Energy Sector. 2021, International Energy Agency.
2. IEA, World Energy Outlook 2022. 2022, IEA.
3. M. Raval, S. Bhardwaj, A. Aravelli, J. Dofe, and H. Gohel, Smart energy optimization for massive IoT using artificial intelligence. Internet of Things, 2021. 13: p. 100354.
4. F. Yi, Z. Zhang, Z. Kang, Q. Liao, and Y. Zhang, Recent advances in triboelectric nanogenerator‐based health monitoring. Advanced Functional Materials, 2019. 29(41): p. 1808849.
5. G. Xu, X. Li, X. Xia, J. Fu, W. Ding, and Y. Zi, On the force and energy conversion in triboelectric nanogenerators. Nano Energy, 2019. 59: p. 154-161.
6. W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, and Y.-K. Choi, Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano, 2021. 15(1): p. 258-287.
7. J. Shen, B. Li, Y. Yang, Z. Yang, X. Liu, K.-C. Lim, J. Chen, L. Ji, Z.-H. Lin, and J. Cheng, Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosensors and Bioelectronics, 2022: p. 114595.
8. W. Xu, M.-C. Wong, and J. Hao, Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy, 2019. 55: p. 203-215.
9. R. Zhang and H. Olin, Material choices for triboelectric nanogenerators: a critical review. EcoMat, 2020. 2(4): p. e12062.
10. S. Pan and Z. Zhang, Fundamental theories and basic principles of triboelectric effect: A review. Friction, 2019. 7(1): p. 7.
11. R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson, Y. Yang, H. Zheng, and H. Olin, The triboelectricity of the human body. Nano Energy, 2021. 86: p. 106041.
12. S. Joo, J.H. Kim, C.-E. Lee, J. Kang, S. Seo, J.-H. Kim, and Y.-K. Song, Eco-Friendly Keratin-Based Additives in the Polymer Matrix to Enhance the Output of Triboelectric Nanogenerators. ACS Applied Bio Materials, 2022. 5(12): p. 5706-5715.
13. G. Spicer. An introduction to the triboelectric series. in Tip-Session presented at AIC 46th Annual Meeting. Houston, TX. 2018.`
14. M. Singh, A. Sheetal, H. Singh, R.S. Sawhney, and J. Kaur, Animal hair-based triboelectric nanogenerator (TENG): a substitute for the positive polymer layer in TENG. Journal of Electronic Materials, 2020. 49: p. 3409-3416.
15. J. Fu, K. Xia, and Z. Xu, A triboelectric nanogenerator based on human fingernail to harvest and sense body energy. Microelectronic Engineering, 2020. 232: p. 111408.
16. Y. Cho, K. Lee, S. Park, S. Ahn, W. Kim, J. Kim, S. Park, J. Sun, C. Jung, and J. Chung, Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure. Nano Energy, 2019. 61: p. 370-380.
17. J.G. Rouse and M.E. Van Dyke, A review of keratin-based biomaterials for biomedical applications. Materials, 2010. 3(2): p. 999-1014.
18. S. Sharma and A. Gupta, Sustainable management of keratin waste biomass: applications and future perspectives. Brazilian Archives of Biology and Technology, 2016. 59.
19. B. Ma, X. Qiao, X. Hou, and Y. Yang, Pure keratin membrane and fibers from chicken feather. International Journal of Biological Macromolecules, 2016. 89: p. 614-621.
20. B. Wang, W. Yang, J. McKittrick, and M.A. Meyers, Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016. 76: p. 229-318.
21. Y. Liu, Q. Fu, J. Mo, Y. Lu, C. Cai, B. Luo, and S. Nie, Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy, 2021. 89: p. 106369.
22. L. Zhang, Y. Liao, Y.C. Wang, S. Zhang, W. Yang, X. Pan, and Z.L. Wang, Cellulose II aerogel‐based triboelectric nanogenerator. Advanced Functional Materials, 2020. 30(28): p. 2001763.
23. T. Charoonsuk, S. Pongampai, P. Pakawanit, and N. Vittayakorn, Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure. Nano Energy, 2021. 89: p. 106430.
24. C.D. Tran and T.M. Mututuvari, Cellulose, chitosan, and keratin composite materials. Controlled drug release. Langmuir, 2015. 31(4): p. 1516-1526.
25. H.B. Tan, F.Y. Wang, D. Wei, Y. Zhang, D. Jing, C. Di Xin, K.F. YU, Y. Jun, Y. Liu, and Y.Q. XU, Fabrication and evaluation of porous keratin/chitosan (KCS) scaffolds for effectively accelerating wound healing. Biomedical and Environmental Sciences, 2015. 28(3): p. 178-189.
26. V.P. Santos, N.S. Marques, P.C. Maia, M.A.B.d. Lima, L.d.O. Franco, and G.M.d. Campos-Takaki, Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 2020. 21(12): p. 4290.
27. F.G. Torres and G.E. De-la-Torre, Polysaccharide-based triboelectric nanogenerators: a review. Carbohydrate Polymers, 2021. 251: p. 117055.
28. X. Chen, Y. Liu, Y. Sun, T. Zhao, C. Zhao, T.A. Khattab, E.G. Lim, X. Sun, and Z. Wen, Electron trapping & blocking effect enabled by MXene/TiO2 intermediate layer for charge regulation of triboelectric nanogenerators. Nano Energy, 2022. 98: p. 107236.
29. X. Xie, X. Chen, C. Zhao, Y. Liu, X. Sun, C. Zhao, and Z. Wen, Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy, 2021. 79: p. 105439.
30. K. Shrestha, S. Sharma, G.B. Pradhan, T. Bhatta, P. Maharjan, S.S. Rana, S. Lee, S. Seonu, Y. Shin, and J.Y. Park, A Siloxene/Ecoflex Nanocomposite‐Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS2/LIG for Self‐Powered Touchless Sensor Applications. Advanced Functional Materials, 2022. 32(27): p. 2113005.
31. S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, and K.-H. Kim, Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018. 64: p. 219-253.
32. M. Arjmand and U. Sundararaj, Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites. Polymer Engineering & Science, 2015. 55(1): p. 173-179.
33. P. Rani, M.B. Ahamed, and K. Deshmukh, Dielectric and electromagnetic interference shielding properties of carbon black nanoparticles reinforced PVA/PEG blend nanocomposite films. Materials Research Express, 2020. 7(6): p. 064008.
34. F. Orozco, A. Salvatore, A. Sakulmankongsuk, D.R. Gomes, Y. Pei, E. Araya-Hermosilla, A. Pucci, I. Moreno-Villoslada, F. Picchioni, and R.K. Bose, Electroactive performance and cost evaluation of carbon nanotubes and carbon black as conductive fillers in self-healing shape memory polymers and other composites. Polymer, 2022. 260: p. 125365.
35. F. Orozco, M. Kaveh, D.S. Santosa, G.M.R. Lima, D.R. Gomes, Y. Pei, R. Araya-Hermosilla, I. Moreno-Villoslada, F. Picchioni, and R.K. Bose, Electroactive Self-Healing Shape Memory Polymer Composites Based on Diels–Alder Chemistry. ACS Applied Polymer Materials, 2021. 3(12): p. 6147-6156.
36. WBA, WBA Global Bioenergy Statistics 2022. 2022, World Bioenergy Association.
37. D.W. Kweku, O. Bismark, A. Maxwell, K.A. Desmond, K.B. Danso, E.A. Oti-Mensah, A.T. Quachie, and B.B. Adormaa, Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 2018. 17(6): p. 1-9.
38. M. Kumar, Social, economic, and environmental impacts of renewable energy resources. Wind Solar Hybrid Renewable Energy System, 2020. 1: p. 227-237.
39. D. Maradin, Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 2021. 11(3): p. 176-183
40. G.E. Halkos and E.-C. Gkampoura, Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 2020. 13(11): p. 2906.
41. E. Delgado-Alvarado, E.A. Elvira-Hernández, J. Hernández-Hernández, J. Huerta-Chua, H. Vázquez-Leal, J. Martínez-Castillo, P.J. García-Ramírez, and A.L. Herrera-May, Recent progress of nanogenerators for green energy harvesting: Performance, applications, and challenges. Nanomaterials, 2022. 12(15): p. 2549.
42. Y. Pang, X. Zhu, C. Lee, and S. Liu, Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system. Nano Energy, 2022: p. 107219.
43. M. Gokana, C.-M. Wu, U. Reddicherla, and K. Motora, Scalable preparation of ultrathin porous polyurethane membrane-based triboelectric nanogenerator for mechanical energy harvesting. Express Polymer Letters, 2021. 15(11).
44. M.R. Gokana, C.-M. Wu, K.G. Motora, J.Y. Qi, and W.-T. Yen, Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly (vinylidene) fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. Journal of Power Sources, 2022. 536: p. 231524.
45. Demonstration Experiment of the “Power-Generating Floor” at Tokyo Station, East Japan Railway Company Press. 2008. p. 1-3.
46. W. Ding, A.C. Wang, C. Wu, H. Guo, and Z.L. Wang, Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics. Advanced Materials Technologies, 2019. 4(1): p. 1800487.
47. S. Yun, Y. Zhang, Q. Xu, J. Liu, and Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy, 2019. 60: p. 600-619.
48. J. Fu, X. Xia, G. Xu, X. Li, and Y. Zi, On the maximal output energy density of nanogenerators. ACS Nano, 2019. 13(11): p. 13257-13263.
49. M.I. Ahamed, R. Boddula, and T. Altalhi, Nanogenerators: Basic Concepts, Design Strategies, and Applications. 2022: CRC Press.
50. E. Delgado-Alvarado, J. Martínez-Castillo, L. Zamora-Peredo, J.A. Gonzalez-Calderon, R. López-Esparza, M.W. Ashraf, S. Tayyaba, and A.L. Herrera-May, Triboelectric and Piezoelectric Nanogenerators for Self-Powered Healthcare Monitoring Devices: Operating Principles, Challenges, and Perspectives. Nanomaterials, 2022. 12(24): p. 4403.
51. S. Korkmaz and İ.A. Kariper, Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy, 2021. 84: p. 105888.
52. Y. Pang, Y. Cao, M. Derakhshani, Y. Fang, Z.L. Wang, and C. Cao, Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter, 2021. 4(1): p. 116-143.
53. L. Zhao, H. Li, J. Meng, and Z. Li, The recent advances in self‐powered medical information sensors. InfoMat, 2020. 2(1): p. 212-234.
54. D. Deepak, N. Soin, and S.S. Roy, Optimizing the efficiency of triboelectric nanogenerators by surface nanoarchitectonics of graphene-based electrodes: A review. Materials Today Communications, 2023: p. 105412.
55. F.-R. Fan, Z.-Q. Tian, and Z.L. Wang, Flexible triboelectric generator. Nano energy, 2012. 1(2): p. 328-334.
56. Z. Zheng, D. Yu, B. Wang, and Y. Guo, Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human motion and vehicle movement. Chemical Engineering Journal, 2022. 446: p. 137393.
57. Y. Jiang, K. Dong, X. Li, J. An, D. Wu, X. Peng, J. Yi, C. Ning, R. Cheng, and P. Yu, Stretchable, washable, and ultrathin triboelectric nanogenerators as skin‐like highly sensitive self‐powered haptic sensors. Advanced Functional Materials, 2021. 31(1): p. 2005584.
58. D.J. Lacks and T. Shinbrot, Long-standing and unresolved issues in triboelectric charging. Nature Reviews Chemistry, 2019. 3(8): p. 465-476.
59. J. Peng, S.D. Kang, and G.J. Snyder, Optimization principles and the figure of merit for triboelectric generators. Science Advances, 2017. 3(12): p. eaap8576.
60. J. Luo and Z.L. Wang, Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020. 2(4): p. e12059.
61. B. Chen, W. Tang, and Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Materials Today, 2021. 50: p. 224-238.
62. Z. Niu, W. Cheng, M. Cao, D. Wang, Q. Wang, J. Han, Y. Long, and G. Han, Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy, 2021. 87: p. 106175.
63. K. Parida, J. Xiong, X. Zhou, and P.S. Lee, Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility. Nano Energy, 2019. 59: p. 237-257.
64. Z.L. Wang, On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017. 20(2): p. 74-82.
65. C. Zhang, L. Zhang, B. Bao, W. Ouyang, W. Chen, Q. Li, and D. Li, Customizing triboelectric nanogenerator on everyday clothes by screen‐printing technology for biomechanical energy harvesting and human‐interactive applications. Advanced Materials Technologies, 2023. 8(4): p. 2201138.
66. T. Du, F. Dong, Z. Xi, M. Zhu, Y. Zou, P. Sun, and M. Xu, Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators. Small, 2023: p. 2300401.
67. Y. Hu, X. Wang, Y. Qin, Z. Li, C. Wang, and H. Wu, A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation. Applied Energy, 2022. 309: p. 118506.
68. P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin, X. Li, D. Liu, W. Song, X. Sun, and J. Wang, Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019. 57: p. 432-439.
69. Z. Zhang, J. Zhang, H. Zhang, H. Wang, Z. Hu, W. Xuan, S. Dong, and J. Luo, A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Research Letters, 2019. 14: p. 1-11.
70. G. Yao, L. Xu, X. Cheng, Y. Li, X. Huang, W. Guo, S. Liu, Z.L. Wang, and H. Wu, Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing. Advanced Functional Materials, 2020. 30(6): p. 1907312.
71. M. Karimi-Kisomi, S. Seddighi, R. Mohammadpour, and A. Rezaniakolaei, Enhancing air filtration efficiency with triboelectric nanogenerators in face masks and industrial filters. Nano Energy, 2023: p. 108514.
72. Z.-Y. Huo, Y.-J. Kim, I.-Y. Suh, D.-M. Lee, J.H. Lee, Y. Du, S. Wang, H.-J. Yoon, and S.-W. Kim, Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nature Communications, 2021. 12(1): p. 3693.
73. B.-G. Park, C. Lee, Y.-J. Kim, J. Park, H. Kim, Y. Jung, J.S. Ko, S.-W. Kim, J.-H. Lee, and H. Cho, Toxic micro/nano particles removal in water via triboelectric nanogenerator. Nano Energy, 2022: p.107433.
74. C. Wu, A.C. Wang, W. Ding, H. Guo, and Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials, 2019. 9(1): p. 1802906.
75. R. Walden, C. Kumar, D.M. Mulvihill, and S.C. Pillai, Opportunities and challenges in triboelectric nanogenerator (TENG) based sustainable energy generation technologies: a mini-review. Chemical Engineering Journal Advances, 2022. 9: p. 100237.
76. X. Li, G. Xu, X. Xia, J. Fu, L. Huang, and Y. Zi, Standardization of triboelectric nanogenerators: Progress and perspectives. Nano energy, 2019. 56: p. 40-55.
77. Y. Wang, X. Jin, W. Wang, J. Niu, Z. Zhu, and T. Lin, Efficient triboelectric nanogenerator (TENG) output management for improving charge density and reducing charge loss. ACS Applied Electronic Materials, 2021. 3(2): p. 532-549.
78. G.M. Rani, C.-M. Wu, K.G. Motora, and R. Umapathi, Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. Journal of Cleaner Production, 2022. 363: p. 132532.
79. Y. Liu, X. Wang, Y. Yan, Z. Rao, H. Chen, and T. Guo, A novel post-processed surface modified double-network polymer layer for a triboelectric nanogenerator. Journal of Materials Chemistry A, 2020. 8(13): p. 6328-6336.
80. H.-Y. Mi, X. Jing, M.A.B. Meador, H. Guo, L.-S. Turng, and S. Gong, Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film: output optimization and performance in circuits. ACS Applied Materials & Interfaces, 2018. 10(36): p. 30596-30606.
81. J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang, T. Zhang, and Z.L. Wang, Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017. 8(1): p. 88.
82. L. Cheng, Q. Xu, Y. Zheng, X. Jia, and Y. Qin, A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nature Communications, 2018. 9(1): p. 3773.
83. Y.W. Kim, H.B. Lee, J. Yoon, and S.-H. Park, 3D customized triboelectric nanogenerator with high performance achieved via charge-trapping effect and strain-mismatching friction. Nano Energy, 2022. 95: p. 107051.
84. H.-W. Park, N.D. Huynh, W. Kim, C. Lee, Y. Nam, S. Lee, K.-B. Chung, and D. Choi, Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy, 2018. 50: p. 9-15.
85. B. Chai, K. Shi, H. Zou, P. Jiang, Z. Wu, and X. Huang, Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator. Nano Energy, 2022. 91: p. 106668.
86. H. Jiang, H. Lei, Z. Wen, J. Shi, D. Bao, C. Chen, J. Jiang, Q. Guan, X. Sun, and S.-T. Lee, Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy, 2020. 75: p. 105011.
87. N. Kaur and K. Pal, Triboelectric nanogenerators for mechanical energy harvesting. Energy Technology, 2018. 6(6): p. 958-997.
88. S. Liu, W. Zheng, B. Yang, and X. Tao, Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy, 2018. 53: p. 383-390.
89. D. Kang, H.Y. Lee, J.-H. Hwang, S. Jeon, D. Kim, S. Kim, and S.-W. Kim, Deformation-contributed negative triboelectric property of polytetrafluoroethylene: A density functional theory calculation. Nano Energy, 2022. 100: p. 107531.
90. C. Zhang, J. Mo, Q. Fu, Y. Liu, S. Wang, and S. Nie, Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021. 81: p. 105637.
91. Y. Song, Z. Shi, G.-H. Hu, C. Xiong, A. Isogai, and Q. Yang, Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. Journal of Materials Chemistry A, 2021. 9(4): p. 1910-1937.
92. Y. Lu, Y. Lu, C. Jin, R. Gao, B. Liu, Y. Huang, Y. Yu, J. Ren, Y. Deng, and X. Tao, Natural wood structure inspires practical lithium–metal batteries. ACS Energy Letters, 2021. 6(6): p. 2103-2110.
93. X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao, S. Wang, and S. Nie, Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. Nano-Micro Letters, 2023. 15(1): p. 1-46.
94. S. Parandeh, M. Kharaziha, and F. Karimzadeh, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy, 2019. 59: p. 412-421.
95. Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang, Z.L. Wang, and X. Cao, Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Advanced Energy Materials, 2018. 8(12): p. 1703133.
96. Z. Yu, Y. Wang, J. Zheng, Y. Xiang, P. Zhao, J. Cui, H. Zhou, and D. Li, Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy, 2020. 68: p. 104382.
97. S. Chao, H. Ouyang, D. Jiang, Y. Fan, and Z. Li, Triboelectric nanogenerator based on degradable materials. EcoMat, 2021. 3(1): p. e12072.
98. C.W. Brown and R.D. Iverson, Triboelectric system. 2003, Google Patents.
99. S. Feroz, N. Muhammad, J. Ratnayake, and G. Dias, Keratin-Based materials for biomedical applications. Bioactive Materials, 2020. 5(3): p. 496-509.
100. C. Holland, K. Numata, J. Rnjak‐Kovacina, and F.P. Seib, The biomedical use of silk: past, present, future. Advanced Healthcare Materials, 2019. 8(1): p. 1800465.
101. E. Kar, M. Barman, S. Das, A. Das, P. Datta, S. Mukherjee, M. Tavakoli, N. Mukherjee, and N. Bose, Chicken feather fiber-based bio-piezoelectric energy harvester: an efficient green energy source for flexible electronics. Sustainable Energy & Fuels, 2021. 5(6): p. 1857-1866.
102. J. Zhu, Y. Cheng, S. Hao, Z.L. Wang, N. Wang, and X. Cao, A self‐healing triboelectric nanogenerator based on feathers for sensing and energy harvesting. Advanced Functional Materials, 2021. 31(34): p. 2100039.
103. P. Chen, J. An, S. Shu, R. Cheng, J. Nie, T. Jiang, and Z.L. Wang, Super‐durable, low‐wear, and high‐performance fur‐brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021. 11(9): p. 2003066.
104. E. Jayaweera, K.R. Wijewardhana, T.K. Ekanayaka, A. Shahzad, and J.-K. Song, Triboelectric nanogenerator based on human hair. ACS Sustainable Chemistry & Engineering, 2018. 6(5): p. 6321-6327.
105. L. Wang, X. Yang, and W.A. Daoud, Mechanical energy harvester based on cashmere fibers. Journal of Materials Chemistry A, 2018. 6(24): p. 11198-11204.
106. L. Sarkar, A. Kandala, S. Bonam, S. Mohanty, S. Singh, and S.K. Vanjari, Flexible polymer-based triboelectric nanogenerator using Poly (vinylidene fluoride) and bombyx mori silk. Materials Today Sustainability, 2022. 20: p. 100230.
107. Q. Niu, L. Huang, S. Lv, H. Shao, S. Fan, and Y. Zhang, Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy, 2020. 74: p. 104837.
108. H.-Y. Mi, H. Li, X. Jing, P. He, P.-Y. Feng, X. Tao, Y. Liu, C. Liu, and C. Shen, Silk and silk composite aerogel-based biocompatible triboelectric nanogenerators for efficient energy harvesting. Industrial & Engineering Chemistry Research, 2020. 59(27): p. 12399-12408.
109. M. Su, J. Brugger, and B. Kim, Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020. 7(3): p. 683-698.
110. C. Liu, J. Li, L. Che, S. Chen, Z. Wang, and X. Zhou, Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy, 2017. 41: p. 359-366.
111. M. Sahu, S. Hajra, S. Panda, M. Rajaitha, B.K. Panigrahi, H.-G. Rubahn, Y.K. Mishra, and H.J. Kim, Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy, 2022. 97: p. 107208.
112. G. Hossain, M. Rahman, I.Z. Hossain, and A. Khan, Wearable socks with single electrode triboelectric textile sensors for monitoring footsteps. Sensors and Actuators A: Physical, 2022. 333: p. 113316.
113. H. Wu, H. Guo, Z. Su, M. Shi, X. Chen, X. Cheng, M. Han, and H. Zhang, Fabric-based self-powered noncontact smart gloves for gesture recognition. Journal of Materials Chemistry A, 2018. 6(41): p. 20277-20288.
114. J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng, C. Ye, and Z.L. Wang, Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Letters, 2021. 13: p. 1-13.
115. L. Wang, W. Liu, Z. Yan, F. Wang, and X. Wang, Stretchable and shape‐adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction. Advanced Functional Materials, 2021. 31(7): p. 2007221.
116. G. Daniels, A. Fraser, and G.E. Westgate, How different is human hair? A critical appraisal of the reported differences in global hair fibre characteristics and properties towards defining a more relevant framework for hair type classification. International Journal of Cosmetic Science, 2023. 45(1): p. 50-61.
117. S.V. Notova, A.H. Duskaeva, S.A. Miroshnikov, G.K. Duskaev, and E.A. Sizova, Change of Elemental Composition in Muscular Tissue and Hair under Food Stress. Biosciences Biotechnology Research Asia, 2016. 12(Spl. Edn. 2): p. 25-31.
118. T.J. McMurry, J.T. Groves, and P.R.O. de Montellano, Cytochrome P-450: structure, mechanism, and biochemistry. Ed. Plenum, New York. 1986.
119. V. Singh, S. Wang, and K. Ng, Keratin as a Biomaterial. Comprehensive Biomaterials II, 2017. 2: p. 542-557
120. E. Meirzadeh, I. Azuri, Y. Qi, D. Ehre, A. Rappe, M. Lahav, L. Kronik, and I. Lubomirsky, Origin and structure of polar domains in doped molecular crystals. Nature Communications, 2016. 7(1): p. 13351.
121. M. Dąbrowska, A. Sommer, I. Sinkiewicz, A. Taraszkiewicz, and H. Staroszczyk, An optimal designed experiment for the alkaline hydrolysis of feather keratin. Environmental Science and Pollution Research, 2022. 29(16): p. 24145-24154.
122. T. Tanabe, N. Okitsu, A. Tachibana, and K. Yamauchi, Preparation and characterization of keratin–chitosan composite film. Biomaterials, 2002. 23(3): p. 817-825.
123. T.-Y. Lu, W.-C. Huang, Y. Chen, N. Baskaran, J. Yu, and Y. Wei, Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020. 195: p. 111258.
124. Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai, M.A.B. Meador, and S. Gong, Highly porous polymer aerogel film‐based triboelectric nanogenerators. Advanced Functional Materials, 2018. 28(13): p. 1706365.
125. M. Wang, W. Liu, X. Shi, J. Pan, B. Zhou, J. Wang, T. Sun, and Y. Tang, Highly efficient and continuous triboelectric power harvesting based on a porous β-phase poly (vinylidene fluoride) aerogel. New Journal of Chemistry, 2021. 45(4): p. 1893-1898.
126. D.W. Kim, J.H. Lee, I. You, J.K. Kim, and U. Jeong, Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators. Nano Energy, 2018. 50: p. 192-200.
127. H. Wang, H. Sakamoto, H. Asai, J.-H. Zhang, T. Meboso, Y. Uchiyama, E. Kobayashi, E. Takamura, and S.-i. Suye, An all-fibrous triboelectric nanogenerator with enhanced outputs depended on the polystyrene charge storage layer. Nano Energy, 2021. 90: p. 106515.
128. N. Tang, Y. Zheng, M. Yuan, K. Jin, and H. Haick, High-performance polyimide-based water–solid triboelectric nanogenerator for hydropower harvesting. ACS Applied Materials & Interfaces, 2021. 13(27): p. 32106-32114.
129. J.-W. Zha, M.-S. Zheng, B.-H. Fan, and Z.-M. Dang, Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy, 2021. 89: p. 106438.
130. M.P. Kim, D.-S. Um, Y.-E. Shin, and H. Ko, High-performance triboelectric devices via dielectric polarization: a review. Nanoscale Research Letters, 2021. 16: p. 1-14.
131. M.N. Biutty, J.M. Koo, M. Zakia, P.L. Handayani, U.H. Choi, and S.I. Yoo, Dielectric control of porous polydimethylsiloxane elastomers with Au nanoparticles for enhancing the output performance of triboelectric nanogenerators. RSC advances, 2020. 10(36): p. 21309-21317.
132. Z. Bai, Z. Zhang, J. Li, and J. Guo, Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy, 2019. 65: p. 104012.
133. C. Wu, T.W. Kim, and H.Y. Choi, Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy, 2017. 32: p. 542-550.
134. Y. Feng, Y. Zheng, G. Zhang, D. Wang, F. Zhou, and W. Liu, A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy, 2017. 38: p. 467-476.
135. S. Lv, X. Zhang, T. Huang, H. Yu, Q. Zhang, and M. Zhu, Trap distribution and conductivity synergic optimization of high-performance triboelectric nanogenerators for self-powered devices. ACS Applied Materials & Interfaces, 2021. 13(2): p. 2566-2575.
136. C. Wu, T.W. Kim, J.H. Park, H. An, J. Shao, X. Chen, and Z.L. Wang, Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers. ACS Nano, 2017. 11(8): p. 8356-8363.
137. S.S. Rana, M.A. Zahed, M.T. Rahman, M. Salauddin, S.H. Lee, C. Park, P. Maharjan, T. Bhatta, K. Shrestha, and J.Y. Park, Cobalt‐nanoporous carbon functionalized nanocomposite‐based triboelectric nanogenerator for contactless and sustainable self‐powered sensor systems. Advanced Functional Materials, 2021. 31(52): p. 2105110.
138. C. Xin, Z. Li, Q. Zhang, Y. Peng, H. Guo, and S. Xie, Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy, 2022. 100: p. 107448.
139. M. Sahoo, S.-N. Lai, J.-M. Wu, M.-C. Wu, and C.-S. Lai, Flexible layered-graphene charge modulation for highly stable triboelectric nanogenerator. Nanomaterials, 2021. 11(9): p. 2276.
140. P.-C. Lee, Y.-C. Ou, R.-C. Wang, and C.-P. Liu, Enhanced output performance of ZnO thin film triboelectric nanogenerators by leveraging surface limited ga doping and insulting bulk. Nano Energy, 2021. 89: p. 106394.
141. N. Cui, L. Gu, Y. Lei, J. Liu, Y. Qin, X. Ma, Y. Hao, and Z.L. Wang, Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano, 2016. 10(6): p. 6131-6138.
142. H. Liu and L. Li, Graphitic materials: Intrinsic hydrophilicity and its implications. Extreme Mechanics Letters, 2017. 14: p. 44-50.
143. M.R. Zakaria, M.H.A. Kudus, H.M. Akil, and M.Z.M. Thirmizir, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Composites Part B: Engineering, 2017. 119: p. 57-66.
144. S. Rizal, E.B. Yahya, H. Abdul Khalil, C. Abdullah, M. Marwan, I. Ikramullah, and U. Muksin, Preparation and characterization of nanocellulose/chitosan aerogel scaffolds using chemical-free approach. Gels, 2021. 7(4): p. 246.
145. K. Fu, K. Griebenow, L. Hsieh, A.M. Klibanov, and R. Langera, FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. Journal of Controlled Release, 1999. 58(3): p. 357-366.
146. S. Sharma, A. Gupta, A. Kumar, C.G. Kee, H. Kamyab, and S.M. Saufi, An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technologies and Environmental Policy, 2018. 20: p. 2157-2167.
147. J. Liu, J. Liu, F. Shi, C. Ma, T. Li, C. Chen, M. Wasim, K. Zhu, H. Sun, and Z. Tian, A facile pore size controlling strategy to construct rigid/flexible silica aerogels for super heat insulation and VOCs adsorption. Chemical Engineering Journal, 2022. 450: p. 138196.
148. S. Hasan, A.Z. Kouzani, S. Adams, J. Long, and M.P. Mahmud, Comparative study on the contact-separation mode triboelectric nanogenerator. Journal of Electrostatics, 2022. 116: p. 103685.
149. G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letters, 2013. 13(2): p. 847-853.
150. R. Dharmasena and S. Silva, Towards optimized triboelectric nanogenerators. Nano Energy, 2019. 62: p. 530-549.
151. T.X. Xiao, X. Liang, T. Jiang, L. Xu, J.J. Shao, J.H. Nie, Y. Bai, W. Zhong, and Z.L. Wang, Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting. Advanced Functional Materials, 2018. 28(35): p. 1802634.
152. C. Yao, A. Hernandez, Y. Yu, Z. Cai, and X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy, 2016. 30: p. 103-108.
153. L. Wang and W.A. Daoud, Highly flexible and transparent polyionic‐skin triboelectric nanogenerator for biomechanical motion harvesting. Advanced Energy Materials, 2019. 9(5): p. 1803183.
154. T. Lafont, L. Gimeno, J. Delamare, G. Lebedev, D. Zakharov, B. Viala, O. Cugat, N. Galopin, L. Garbuio, and O. Geoffroy, Magnetostrictive–piezoelectric composite structures for energy harvesting. Journal of Micromechanics and Microengineering, 2012. 22(9): p. 094009.
155. H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, and Q. Zheng, Symbiotic cardiac pacemaker. Nature Communications, 2019. 10(1): p. 1821.
156. G.M. Rani, C.-M. Wu, K.G. Motora, R. Umapathi, and C.R.M. Jose, Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy, 2023: p. 108211.
157. H. Møller and C.S. Pedersen, Hearing at low and infrasonic frequencies. Noise & Health, 2004. 6(23): p. 37-57.
158. A. Osses Vecchi, R. García León, and A. Kohlrausch. Modelling the sensation of fluctuation strength. in Proceedings of Meetings on Acoustics. 2016. 28(1). Buenos Aires, Argentina. AIP Publishing.
159. M.N. Yahya, M. Sambu, H.A. Latif, and T.M. Junaid. A study of acoustics performance on natural fibre composite. in IOP Conference Series: Materials Science and Engineering. 2017. 226(1): p. 012013. Melaka, Malaysia. IOP Publishing.
160. C. Fan, Y. Tian, Z. Wang, J. Nie, G. Wang, and X. Liu. Structural parameter effect of porous material on sound absorption performance of double-resonance material. in IOP Conference Series: Materials Science and Engineering. 2017. 213(1): p. 012028. Guangzhou, China. IOP Publishing.
161. M.M. El-Mansy, A.-E.A. & Abd-Elbasseer, Mohammed & Youssif, R.S.. Standard uncertainity of material size effect on sound absorption coefficient in reverberatin room. Journal of Applied Sciences Research, 2011. 7: p. 166-173.
162. B.M. Lee and J. Ouyang, Intelligent healthcare service by using collaborations between IoT personal health devices. International Journal of Bio-Science and Bio-Technology, 2014. 6(1): p. 155-164.
163. Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang, and Z. Li, Wearable and implantable triboelectric nanogenerators. Advanced Functional Materials, 2019. 29(20): p. 1808820.
164. R.W. Bohannon, Grip strength: an indispensable biomarker for older adults. Clinical Interventions in Aging, 2019: p. 1681-1691.
165. V.S. Manoharan, S.G. Sundaram, and J.I. Jason, Factors affecting hand grip strength and its evaluation: A systemic review. International Journal of Physiotherapy and Research, 2015. 3(6): p. 1288-1293.

無法下載圖示 全文公開日期 2025/08/18 (校內網路)
全文公開日期 2033/08/18 (校外網路)
全文公開日期 2033/08/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE