簡易檢索 / 詳目顯示

研究生: 林柏佑
Po-Yu Lin
論文名稱: 混凝土填充鋼管貫穿式接頭梁柱接頭區受反覆 載重下之有限元素分析
A Finite Element Approach for Panel Zone Cyclic Behavior of Steel Beams to Concrete- Filled Steel Tubular Columns with Through- Flange Connections
指導教授: 廖國偉
Kuo-Wei Liao
口試委員: 陳瑞華
Rwey-Hua Cherng
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: ABAQUS數值分析梁柱接頭接觸面
外文關鍵詞: ABAQUS, Numerical Simulation, Beam to Column, Contact Surface
相關次數: 點閱:371下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋼管混凝土柱在同尺寸下,相較於純鋼或是純混凝土柱皆有著更佳的性能。鋼管提供圍壓使得混凝土強度和韌性提升,而混凝土提供鋼管側向支撐,減低鋼管挫屈產生的機會,使得構件具有高強度、高韌性之特性。鋼結構之梁柱接頭對於台灣地震頻繁之國家,其消能能力非常重要,但又同時須兼顧經濟效應與施工性。本研究以貫穿式梁柱接頭為此次接頭之形式,進行結構大型試驗之數值模擬分析,希望能藉由數值模擬的方式提出有效之分析模型,供日後進行更多不同的研究分析。本研究使用商業數值軟體ABAQUS進行數值模擬分析。鋼管混凝土之剪力提供來自於鋼管與混凝土,因為此次鋼管之形狀為方形,其剪力傳遞行為有待確認,混凝土在反覆載重下,傳遞剪力會形成拉壓桿,因為實驗中有許多無法驗證之事項,因此希望藉由數值模型分析方式驗證。數值模擬結果可以發現,純鋼管試體在模擬上僅於Drift值4%之前能較準確模擬,相對而言,數值模型對於鋼腹板所承受剪力,無法提供類似預測準度。含有混凝土之試體,分析結果與試驗結果差強人意,甚至有分析數小時後即中斷分析之鋼管混凝土模型,未來可針對混凝土之參數與接觸面(Contact Surface)設定深入研究,或能得到更好的結果。


Concrete-Filled Steel Tube (CFST) often has a better performance than that of conventional steel or concrete columns with same size. In CFST, concrete is confined by steel and its strength and ductility are increased. On the other hand, concrete provides lateral support to prevent steel from local bucking. Thus, CFST often possesses more strength and more ductility. In Taiwan, it is important to ensure that the beam to column connection would not damage when earthquake is occurred. When designing beam to column joint, cost and constructability have to been considered.
The purpose of this study is to build an accurate numerical model for future use. In this study, simulation was performed using commercial software ABAQUS. The shear force of the concrete-filled steel tube is provided by steel and concrete. The column shape studied here is square, it is known under the cycle loading, the strut and tie mechanism will be formulated in concrete. However, the shear behavior in steel web is unclear. This study attempts to investigate such behavior through numerical simulation. Results show that the built model is able to provide a satisfy simulation for steel tube specimen (without concrete) up to 4% drift. Results of CFST simulation are relatively inaccurate. Improvement could be achieved if the concrete parameter and contact surface setting in ABAQUS are properly applied
.

目錄 誌謝 I 摘要 II ABSTRACT III 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究方法 2 1.4論文架構 2 第二章 文獻回顧 4 2.1 鋼管混凝土相關文獻回顧 4 2.2 參數設定 8 第三章 梁柱接頭數值模擬分析 10 3.1梁柱接頭區理論 10 3.2 梁柱接頭試驗 15 3.2.1 試驗介紹 15 3.2.2 試體尺寸與材料 16 3.2.3 試體實體配置 17 3.3 ABAQUS數值分析 18 3.3.1 數值模型與元件元素 19 3.3.2 鋼元件 材料參數 22 3.3.3 混凝土元件 材料參數 26 3.3.4 Drucker-Prager Models 塑性降伏準則 31 3.3.5 網格 36 3.3.6 步驟與邊界條件 37 3.3.8 載重設定 43 第四章 結果與討論 44 4.1 圍壓混凝土與網格元素 44 4.2 FP1試驗與分析結果比較 46 4.3 FP1C試驗與分析結果比較 51 4.4 FP2、FP2C試驗與分析結果比較 58 4.5 FP3、FP3C試驗與分析結果比較 60 第五章 結論與建議 63 5.1結論 63 5.2建議 64 參考文獻 65

[01] ABAQUS 2010. ABAQUS Analysis User’s Manual. 6.10 ed.。
[02] AMERICAN CONCRETE INSTITUTE (ACI) 1999. Building code requirements for structural concrete and commentary. ACI 318-99. Detroit。
[03] AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) 2010. Specification for Structural Steel Building. Chicago, IL: American Institute of Steel Construction。
[04] D. C. Drucker & W. Prager. 1952. Soil Mechanics and Plastic Analysis for Limit Design. Quarterly of Applied Mathematics, Vol. 10, No. 2, 157-165。
[05] L. P. Saenz. 1964. Discussion of 'Equation for the stress-strain curve of concrete' by P.Desayi, and S.Krishnan. ACI J., 61, 1229-1235。
[06] B. G. Rabbat & H. G. Russell. 1985. Friction Coefficient of Steel on Concrete or Grout, Journal of Structural Engineering, Vol. 111, No. 3, 505-515。
[07] J. B. Mander, M. J. N. Priestley & R. Park. 1988. Theoretical Stress- Strain Model for Confined Concrete. Journal of Structural Engineering New York, N.Y., 114, 1804-1826。
[08] H. Hu & W. Schnobrich. 1989. Constitutive Modeling of Concrete by Using Nonassociated Plasticity. Journal of Materials in Civil Engineering, 1, 199-216。
[09] T. Paulay & M. J. N. Priestley. 1992. Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons。
[10] J. A. Wium. 1992. A Composite Columns: Force Transfer from Steel Section to Concrete Encasement. PhD, Swiss Federal Inst. of Tech。
[11] W. F. Chen & Atef F. Saleeb. 1994. Constitutive Equations for Engineering Materials, Second, revised edition, ELSEVIER。
[12] Yousef. M. Alostaz & Stephen P. Schneider. 1996. Analytical Behavior of Connection to Concrete-Filled Steel Tubes. Journal of Constructional Steel Research, Vol. 40, No. 2, 95-127。
[13] Toshiaki Fujimoto, Eiichi Inai, Makoto Kai, Koji Mori, Osamu Mori and Isao Nishiyama. 2000. Behavior of Beam-to-Column Connection of CFT Column System. 12th World Conference on Earthquake Engineering。
[14] Brett C. Gourly, Cenk Tort, Jerome F. Hajjar and Paul H. Schiller. 2001. A Synopsis of Studies of the Monotonic and Cyclic Behavior of Concrete-Filled Steel Tube Beam-Columns. Structural Engineering Report, No. ST-01-4。
[15] H. T. Hu, Chiung-Shiann Huang, Ming-Hsien Wu & Tih-Min Wu. 2003. Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect. Journal of Structural Engineering, Vol. 129, No. 10, 1322-1329。
[16] Daxu Zhang, Shengbin Gao and Jinghai Gong. 2012. Seismic Behavior of Steel Beam to Circular CFST Columns Assemblies with External Diaphragms. Journal of Constructional Steel Research, Vol. 76, 155-166。
[17] Jia-Fei Jiang & Tu-Fei Wu. 2012. Identification of Material Parameters for Drucker-Prager Plasticity Model for FRP Confined Circular Concrete Columns. International Journal of Solids and Structures, Vol. 49, 445-456。
[18] Amit H. Varma, James M. Ricles, Richard Sause and Le-Wu Lu. 2014. Seismic Behavior and Design of High-Strength Square Concrete- Filled Steel Tube Beam Columns. Journal of Structural Engineering, Vol. 130, No. 2, 169-179。
[19] Abdelrahim K. Dessouki, Ahmed H. Yousef and Mona M. Fawzy. 2015. Investigation of In-plane Moment Connections of I-beam to Square Concrete-Filled Steel Tube Columns under Gravity Loads. Housing and Building National Research Center, Vol. 11, 43-56。
[20] Felix Rickhey, Minsoo Kim, Hyungyli Lee and Naksoo Kim. 2015. Evaluation of Combined Hardening Coefficients of Zircaloy-4 Sheets by Simple Shear Test. Material and Design, Vol. 65, 995-1000。
[21] Mohammad Hassan Mollazadeh. 2015. Load Introduction into Concrete-Filled Steel Tubular Columns. PhD, The University of Manchester。
[22] Vuong Nguyen Van Do, Chin-Hyung Lee and Kyong-Ho Chang. 2015. A Constitutive Model for Uniaxial/Multiaxial Ratcheting Behavior of a Duplex Stainless Steel. Materials and Design, Vol. 65, 1161-1171。
[23] Xilin Lu, Liping Kang and Roberto T. Leon. 2015. The Influence of Joint Details and Axial Force Ratios on Failure Mechanisms of SCFT Column-Beam Connections. Journal of Asian Architecture and Building Engineering, Vol.14, No. 1, 197-204。
[24] You-Fu Yang, Zhu Wen and Xiang-He Dai. 2016. Finite Element Analysis and Simple Design Calculation Method for Rectangular CFSTs under Local Bearing Forces. Thin-Walled Structures, 316- 329。
[25] Dolf Broekaart, 2016, 5 Reasons Why You Should Use a Mid-surface Shell Mesh for Thin-Walled Parts, Retrieve Form http://info.simuleon.com/blog/5-reasons-why-your-fea-simulations- should-be-setup-with-a-mid-surface-shell-mesh-for-thin-walled- parts。
[26] 財団法人日本建築セソタ一,2008,冷間成形角形鋼管設計• 施工マ二ュアル。
[27] 內政部營建署, 2010,鋼結構極限設計法規範及解說。
[28] 陳生金, 2009,鋼結構行為與設計,科技圖書。
[29] 李宏仁, 2000,鋼筋混凝土耐震梁柱接頭剪力強度之研究,國 立台灣科技大學營建工程系博士學位論文。
[30] 吳逸民, 2001,鋼管混凝土數值模擬之研究,國立成功大學土 木系碩士論文。
[31] 陳致良, 2002,鋼管混凝土柱受軸壓與彎矩之行為分析,國立 成功大學土木系碩士論文。
[32] 羅勝宏, 2002,鋼梁接圓形鋼管混凝土柱接頭耐震行為,國立 交通大學土木工程學系碩士論文。
[33] 蘇峰堅, 2004,鋼管混凝土柱受純彎矩行為之數值模擬,國立 成功大學土木系碩士論文。
[34] 張嘉興, 2005,鋼管混凝土柱受軸壓及雙向彎矩載重之非線性 分析,國立成功大學土木系碩士論文。
[35] 柳曉晨、王元清、戴國欣、王佼姣、石永久, 2015,結構消(耗) 能元件蕊材SN490B本構關係數值模擬,Journal of Civil, Architectural & Environment Engineering, Vol.37, No.6。
[36] 陳宥廷, 2017,””,國立台灣科技大學碩士論文。

QR CODE