簡易檢索 / 詳目顯示

研究生: 楊政偉
Jheng-wei Yang
論文名稱: 應用改良基因演算法於自然光菱鏡集光器之配置
Prism-based sunlight concentrator layout using a revised genetic algorithm
指導教授: 王孔政
Kung-jeng Wang
口試委員: 周碩彥
Shuo-yan Chou
黃忠偉
Jong-woei Whang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 55
中文關鍵詞: 自然光集光器基因演算法菱鏡配置
外文關鍵詞: Sunlight concentrator, genetic algorithm, prisms layout
相關次數: 點閱:233下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能是一種對於自然環境能產生少許負面影響的綠色能源。其中菱鏡結構所組成的集光器廣泛地被使用在許多太陽能源的應用上。因此,本研究發展一套以創新菱鏡配置方法的基因演算法來改善集光器的集光效率。此外,本研究也考量到集光器的對稱性因子以發展出具有對稱程度且高集光效率的集光器。並透過設計和改良基因演算法的基因操作子來發展集光器最佳集光效率的配置。我們進行數次實驗來評估不同運算子間對集光效率的表現。實驗結果顯示,單純考量集光最佳化,集光器能提升平均200%~230%的集光效率;而加入對稱性因子的結果顯示,集光器能提升平均200%~215%的集光效率。此外,本研究也透過敏感度分析的實驗來探討基因演算法應用在自然光集光器配置的適應性。


    Solar light is a source of green energy and produces less negative impacts on the environment. The layout of a prism-based sunlight concentrator has been comprehensively utilized and a great influence on sunlight concentration system. This study develops a revised genetic algorithm (GA) to improve such layout for improving the sunlight concentration efficiency. In addition to the sunlight concentration, this study considers the layout symmetry as well. Experiments are conducted to evaluate the performance of per guiding fiber by different GA operators. Experiment results show that 200%~230% improvement in brightness and 200%~215% in symmetry is achieved. In addition, sensitivity is conducted to test different sizes of sunlight concentrators.

    摘要 I ABSTRACT II CONTENT III FIGURE LIST V TABLE LIST VII Chapter 1 Introduction 8 1.1 Research background 8 1.2 Research motivation 9 1.3 Research purpose 9 1.4 Research Structure 10 Chapter 2 Literature Survey 11 2.1 Solar concentrator and optical device design 11 2.2 Exact mathematical model and soft-computing methods 13 2.3 Facility planning and genetic algorithm 14 Chapter 3 A Revised Genetic Algorithm for Sunlight Concentrator 15 3.1 Assumption in PLGA 15 3.2 Prism types 17 3.3 Chromosome design in PLGA 20 3.4 Logic of PLGA 21 3.5 Fitness function 28 3.6 Crossover operators 30 3.7 Mutation operators 34 Chapter 4 Results and Discussions 36 4.1 Sensitivity analysis on GA operators 36 4.2 Optimal sunlight concentrator layout 40 4.3 Sensitivity analysis on problem parameters 42 Chapter 5 Conclusions 46 Chapter 6 Future Research 47 Reference 48 Appendix 51 A. Data of Experiments on Score 51 B. Data of Experiments on Brightness(Lumen) 51 C. User Interface of PLGA 52

    Chen Y. M., Lee C. H., and Wu H. C. (2005) Calculation of the Optimum Installation Angle for Fixed Solar-cell Panels Based on the Genetic Algorithm and the Simulated-annealing Method. IEEE Transactions on Energy Conversion, 20,467-473.
    Critten D.L. (1985) The Use of Reflectors in Venetian Blinds to Enhance Irradiance in Greenhouses, Solar Energy, Vol. 34, No.1, pp. 83-92.
    Chen C-F, Lin C-H, and Jan H-T (2010) A Solar Concentrator with Two Reflection Mirrors Designed by Using A Ray Tracing Method, Optik, 121, 1042-1051.
    Chen C-F, Lin C-H, Jan H-T, and Yang Y-L (2009) Design of A Solar Concentrator Combining Paraboloidal and Hyperbolic Mirrors Using Ray Tracing Method, Optics Communications, 282, 360-366.
    David E. (1953) Genetic Algorithm in Search, Optimization and Machine Learning,
    Addison Wesley Publishing Company, Inc., 1-57.
    Diver R. B. and Moss T. A. (2007) Practical Field Alignment of Parabolic Trough Solar Concentrators, Journal of Solar Energy Engineering-Transactions of the Asme, 129, 153-159.
    Edmonds I.R., Cowling I.R., Meara L.A., and Wheeler B. (1983) The Design and Performance of Ideal Solar Concentrators based on The Prism-Assisted Cylindrical Reflector. Solar Energy, Vol. 30, No.6, pp. 537-543.
    Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Detroit MI.
    Korecko J., Jirka V., Sourek B., and Cerveny J. (2010) Module Greenhouse with High Efficiency of Transformation of Solar Energy, Utilizing Active and Passive Glass Optical Rasters, Solar Energy, 84, 1794-1808.
    Li D.G. and Watson A.C. (1999) Genetic Algorithms in Optical Thin Film Optimizations Design” Edith Cowan University.
    Long S., and Michael Y.L.C. (2012) A Review on Sustainable Design of Renewable Energy Systems. Renewable and Sustainable Energy Reviews, 16, 192-207.
    Mills D.R. and Giutronich J.E. (1978) Ideal Prism Solar Concentrator, Solar Energy, Vol. 21. Pp. 423-430.
    Masato M. and Toshiro M. (2005) Static Solar Concentrator with Vertical Flat Plate Photovoltaic Cells and Switchable White/Transparent Bottom Plate, Solar Energy Materials and Solar Cells, 87, 299-309.
    Mialhe P., Mouhamed S., and Haydar A. (1991) The Solar Cell Output Power Dependence on the Angle of Incident Radiation, Renewable Energy, 1, 529-521.
    Mitsuo G. and Runwei C. (2000) Genetic Algorithms and Engineering Optimization, AWiley-Interscience.
    Pirkul H. and Nagarajan V. (1992) Locating Concentrators in Centralized Computer Networks, Annals of Operations Research, 36, 247-261.
    Rabl A. (1977) Prisms with Total Internal Reflection as Solar Reflectors, Solar Energy, Vol. 19, pp. 555-565.
    Shiina, T. (2000) Integer Programming Model and Exact Solution for Concentrator Location Problem, 43, 291-305.
    Uematsu T., Yazawa Y., Miyamurra Y.,Muramastsu S., Ohtsuka H., Tsutsui K., and Warabisako T. (2001) Static Concentrator Photovoltaic Module with Prism Array, Solar Energy Materials & Solar Cells, 67, 415-423.
    Whang J.W., Yang S- H., and Chen Y.-Y. (2009) Light Concentrator, Taiwan Patent No. M379027, 37,12.
    Wang C., Abdul-Rahman H. and Rao S.P. (2010) Daylighting can be Fluorescent: Development of a Fiber Solar Concentratorand Test for its Indoor Illumination. Energy and Buildings, 42, 717-727.
    Yang S.-H., Chen Y.-Y., and Whang J.W. (2009) Using Prismatic Structure and Brightness Enhancement Film to Design Cascadable Unit of Static Solar Concentrator in Natural Light Guiding System, Proc, SPIE 7423.

    QR CODE