簡易檢索 / 詳目顯示

研究生: 白楚瑄
Chu-Hsuan Pai
論文名稱: 以射頻振盪器為基礎之微流體介電係數感測器研製
Development of Radio-Frequency Oscillator-Based Microfluidic Permittivity Sensor
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 王蒼容
Chun-Long Wang
黃建彰
Chien-Chang Huang
蕭培墉
Pei-Yung Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 55
中文關鍵詞: 微波微流體感測器液體介電係數感測器介電係數量測微流體感測振盪器經改良之共面帶線共振器 (MCSR)T型LC共振器 (TLCR)
外文關鍵詞: microwave microfluidic sensor, liquid dielectric sensor, dielectric measurement, microfluidic sensing oscillator, modified coplanar strip resonator (MCSR), T-shape LC resonator (TLCR)
相關次數: 點閱:397下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文基於射頻振盪器設計一新型微流體介電係數感測器,並使用酒精水溶液與葡萄糖水溶液作為待測液體(liquid under test, LUT),進行感測器效能驗證。論文中設計了兩種不同的感測元件,分別為經改良之共面帶線共振器(modified coplanar strip resonator, MCSR)及T型LC共振器(T-shape LC resonator, TLCR),用以聚焦電場於感測區域內,並同時作為感測振盪器之頻率選擇元件。此外,兩種感測振盪器分別與毛細管和二甲基矽氧烷(polydimethylsiloxane, PDMS)微流體裝置整合,並比較液體介電係數量測之準確度。當不同待測液體注入微流體裝置時,振盪器的振盪頻率與功率將發生改變,輸出訊號經由頻率解調器轉換成電壓訊號。在進行待測液體量測前,感測器使用已知介電係數液體進行校準,並使用曲線擬合將介電係數對應到電壓訊號。在酒精水溶液及葡萄糖水溶液作為待測液體的實驗中,本論文感測器的測量結果與市售介電係數量測儀器所獲得的結果吻合。本論文所提出之微流體介電係數感測器具有靈敏度高、電路結構簡易等優點,且可自行產生射頻測試源,未來可進一步應用於實際的生物醫學或食品工業等領域。


    This thesis designs a new microfluidic dielectric sensor based on a radio-frequency oscillator. The ethanol-water mixtures and glucose solution are used as the liquid under test (LUT) to verify the sensor's performance. In this thesis, two different sensing elements are designed, namely MCSR (modified coplanar strip resonator, MCSR) and TLCR (T-shape LC resonator, TLCR), to concentrate the electric field in the sensing area and also serve as a frequency-selective element for oscillator design. In addition, two sensing oscillators were integrated with capillary and Polydimethylsiloxane (PDMS) microfluidic devices, respectively, and their measured dielectric measurement accuracy was compared. When different LUTs are injected into the microfluidic device, the oscillation frequency and power of the oscillator will change, and the output signal will be converted into a voltage signal through a frequency demodulator. Before measuring the LUT, the sensor is calibrated with a liquid of known dielectric constant, and curve fitting is used to map the dielectric constant to the voltage signal. In the experiment of ethanol-water mixtures and glucose solution as the LUTs, the measurement results of the sensor proposed in this thesis are consistent with the results obtained by the commercial dielectric probe kit. The microfluidic dielectric sensor proposed in this thesis has the advantages of high sensitivity, simple circuit structure, etc., and can generate a radio-frequency test source by itself. It can be further applied to the fields of biomedicine or the food industry in the future.

    摘要 ii Abstract v 誌謝 vi 目錄 vii 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 5 1-3 章節說明 12 第二章 射頻微流體感測振盪器設計 13 2-1 經改良之共面帶線共振器(MCSR)設計與量測 13 2-2 T型LC共振器(TLCR)設計與量測 17 2-3 共射極放大器設計與量測 22 2-4 感測振盪器設計與量測 25 2-4-1 MCSR感測振盪器設計與量測 26 2-4-2 TLCR感測振盪器設計與量測 36 2-5 感測振盪器量測結果比較與討論 41 第三章 感測振盪器之解調電路設計 43 3-1 解調電路設計與驗證 43 3-2 液體介電係數量測結果 46 3-2-1 酒精水溶液量測 47 3-2-2 葡萄糖水溶液量測 50 第四章 結論 53 參考文獻 55

    [1] D. M. Pozar, Microwave Engineering, 3rd ed. New York, NY, USA: Wiley, 2005.
    [2] [技術文章] 材料介電特性及使用Keysight材料量測方案自動執行介電係數和磁導率量測。[Online] Available: https://www.pinsyun.com.tw/content-146.html
    [3] EM Labs, “Free space method test fixture 18-330 GHz”. [Online] Available: https://www.emlabs.jp/en/1-5-freespace.php
    [4] 臺科大與工研院聯手開發鮮度感測器,透過 AI 分析介電係數來預測食物腐敗程度。[Online] Available: https://www.ithome.com.tw/news/132923
    [5] 陳君,透過液體介電係數的量測以監測生質柴油轉脂化的過程,國立清華大學物理系碩士論文,2020年7月。
    [6] 林育生、王翔郁,利用介電性質在微流體系統中操控與檢測細胞的研究,化工,第66卷第3期,2019年。
    [7] 各國疫情統計。[Online] Available: https://pride.stpi.narl.org.tw/index/graph-world/detail/4b1141ad70bfda5f0170e64424db3fa3
    [8] P. Robin et al., “A DNA biosensors-based microfluidic platform for attomolar real-time detection of unamplified SARS-CoV-2 virus,” Biosensors and Bioelectronics: X, vol. 13, 2023.
    [9] Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, “Novel microwave microfluidic sensor using a microstrip split-ring resonator,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 679–688, Mar. 2014.
    [10] A. Ebrahimi, J. Scott, and K. Ghorbani, “Ultrahigh-sensitivity microwave sensor for microfluidic complex permit-ivity measurement,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4269–4277, Oct. 2019.
    [11] E. L. Chuma et al., “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Sensors Journal, vol. 18, no. 24, pp. 9978–9983, Dec. 2018.
    [12] G. M. Rocco et al., “3-D printed microfluidic sensor in SIW technology for liquids’ characterization,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1175–1184, Mar. 2020.
    [13] A. A. Helmy, S. Kabiri, M. M. Bajestan, and K. Entesari, “Complex permittivity detection of organic chemicals and mixtures using a 0.5-3 GHz miniaturized spectroscopy system,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4646–4658, Dec. 2013.
    [14] A. A. Helmy et al., “A self-sustained CMOS microwave chemical sensor using a frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2467–2483, Oct. 2012.
    [15] C.-H. Tseng and C.-Y. Yang, “Novel microwave frequency-locked-loop-based sensor for complex permittivity measurement of liquid solutions,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 10, pp. 4556–4565, Oct. 2022.
    [16] A. P. Saghati et al.,” A Metamaterial-Inspired Wideband Microwave Interferometry Sensor for Dielectric Spectroscopy of Liquid Chemicals,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2558–2571, July. 2017.
    [17] Infineon, Low profile high gain silicon NPN RF bipolar transistor BFP405. [Online] Available: https://www.infineon.com/dgdl/Infineon-BFP405-DS-v02_00-EN.pdf?
    fileId=5546d462689a790c01690f03150a390c
    [18] NPN common emitter. [Online] Available: https://commons.wikimedia.org/wiki/
    File:NPN_common_emitter.svg
    [19] Behzad Razavi, RF Microeletronics, 2nd Ed., Upper Saddle River, NJ, USA: Prentice Hall Press, 2011.
    [20] 張修晢,使用鎖頻迴路研製24 GHz微流體濃度感測器,國立台灣科技大學電子工程系碩士論文,民國112年。
    [21] Analog Devices, LF–2.7 GHz RF/IF Gain and Phase Detector (AD8302), 2018. [Online] Available: https://www.analog.com/media/cn/technical-documentation/
    data-sheets/AD8302.pdf
    [22] L. A. Alves, J. B. A. e Silva, and M. Giulietti, “Solubility of D-glucose in water and ethanol/water mixtures,” J. Chem. Eng. Data, vol. 52, no. 6, pp. 2166–2170, Sep. 2007.

    QR CODE