簡易檢索 / 詳目顯示

研究生: 林旺春
Wang-Chuen Lin
論文名稱: 考慮阻尼係數分配之黏性阻尼減震結構設計
Seismic Design of Building Structures with Viscous Dampers Considering Distribution of Damping Coefficient
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 羅俊雄
Chin-Hsiung Loh
宋裕祺
Yu-Chi Sung
王安培
An-Pei Wang
陳瑞華
Rwey-Hua Cherng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 362
中文關鍵詞: 黏性阻尼器耐震設計黏性阻尼常數(係數)消能系統地震工程
外文關鍵詞: viscous damper, viscous damping coefficient, energy dissipation system, seismic design, earthquake resistant design
相關次數: 點閱:267下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

迄今所有的國內外規範當中,有關於加裝黏性阻尼器之減震房屋結構的建議,僅止於提供添加等效阻尼比之估算公式,對於黏性阻尼器之阻尼常數在房屋結構的豎向分配方面,並無任何具體的建議或規定。而此研究領域的相關探討卻又各具優缺點,並可概分為兩類;第一類為運用最佳化演算法而衍生之設計流程,這一系列研究方法過於複雜化與數學化,使得實務工程界採納並應用於設計的意願仍相對較低。再者,由於這些最佳化設計方法並無聚焦於阻尼器所提供之有效阻尼比的多寡,因此其最佳化的準則尚欠缺說服力。第二類則採用較具實務價值之分配法,例如平均分配法、與樓層剪力成正比分配法等。本研究將在固定添加阻尼比的條件下,推導兩種黏性阻尼器阻尼常數的豎向分配設計公式,而分配原則乃基於阻尼常數正比於樓層剪力應變能的觀念。其原理等同於目前規範中所使用的模態應變能法或複合阻尼比之理論。本研究所提出的分配方法將與實務工程常用的方法及所謂的簡化序列搜尋法(SSSA)比較。根據分析結果,從減震效果、整體添加之阻尼常數(阻尼器之總數量)、阻尼器最大出力等因素歸結,本研究所提出的阻尼常數分配的兩種方法之一,將樓層阻尼常數正比於樓層剪力應變能並分配在“有效樓層”的設計(SSSEES),可以更有效率的分配阻尼常數,並使得阻尼器的數量大為減少,降低阻尼器的成本,具有更佳的經濟效益,所以SSSEES可視為一個有效、經濟且適於實務工程應用的方法。
本研究所關注的另一個研究重點,乃探討與發展外接式黏性阻尼器於減震結構之應用的設計方法。其基本架構原生於採用黏性阻尼器連結兩棟相鄰結構的研究概念。然而大部分相關文獻的研究目的多為增加兩相鄰結構的耐風能力與降低彼此之間的碰撞機率。因此假設新建結構或既有建築周圍有足夠可利用之土地空間的前提下,本研究提出沿相鄰結構建造反力鋼構架外接阻尼器之耐震設計與補強方法。採用第一模態有效質量簡化兩相鄰多自由度結構的耦合行為與考慮兩相鄰結構的頻率比與阻尼常數比的關係發展一套設計流程,進而以各樓層相對動能之大小作為權重,分別推導(1)沿反力鋼構架各樓層阻尼常數正比於該樓層相對動能的大小進行分配之設計(SKE)與(2)按照樓層相對動能的大小,將阻尼常數分配在反力鋼構架之有效樓層之設計(SKEES),並與平均分配法進行比較。透過兩種本研究推導之阻尼常數分配法與平均分配法在兩種補強方法的分析與探討,結果顯示經外接阻尼器後的結構識別阻尼比可有效達到設計系統阻尼比,並能減緩補強後之結構各樓層最大受震反應與歷時反應。歸納計算結果與設計參數仍可知本研究所建議之SKEES分配法,將阻尼常數分配在“有效之樓層”之作法,可視為較佳的設計建議。
綜合上述,在設計時一但決定黏性阻尼器所提供之等效阻尼比,本研究將依據能量原理與樓層阻尼常數的關係,分別推導內接黏性阻尼器沿樓層豎向分配阻尼常數的計算公式以及建立一套外接黏性阻尼器按銜接樓層分配阻尼常數之設計流程與計算公式。最終由數值例分析與探討可知雖然增加了些許的計算量,卻能提升黏性阻尼器之消能效率與實務設計之經濟性,因此期許能帶給實務工程師一個較佳的設計選擇。


There have been design specifications for the design of supplemental viscous dampers to building structures in existing seismic design codes. However, there exists no corresponding substantial procedure for distributing viscous damping coefficients along the height of the structures. In the thesis two non-repetitive design formulas for viscous damping coefficient distributions are proposed corresponding to a desired added damping ratio. The formulas are derived based on the concept that viscous damping coefficient distribution of each story is proportional to ratio of the story strain energy to the total shear strain energy of the structure. The proposed methods are compared with two distribution methods commonly used by practical engineers and a repetitive simplified sequential search algorithm (SSSA). The comparison is conducted using three planar frames, which include one vertically regular and two vertically irregular frames, equipped with viscous dampers corresponding to a desired effective system damping ratio. It is found that the five distribution methods results into similar elastic seismic responses of the structures with the same design damping ratio. Moreover, total computational efforts and design parameters are discussed, such as the total added damping coefficient, maximum damper force at one story, total damper force, and control of story drift angle. The findings indicate that one of the proposed methods distributing the damping coefficient based on the story shear strain energy to efficient stories (SSSEES) could be a practical and efficient option for the design of viscous damper.
Using viscous damper to link two adjacent buildings has been a interesting research topics in recent years. Similar to this concept, this thesis also proposes a method for the seismic retrofit of structures where the heavy construction in the interior of the building is not allowable. This type of structure may include but not limited to existing hospital structure and microelectronics manufacturing facilities (FABs). This idea is to construct reaction frames adjacent to the structure to be seismically retrofitted, and connect the structure and the reaction frames with viscous dampers. The study firstly involves the design of adopting effective modal mass of the first modal shape to simplify the coupling effect of multi-degree of freedom system, and it develops a set of design procedure based on frequency ratio and damping coefficient ratio of the two adjacent structures. Furthermore, two viscous damping coefficient distribution methods are derived in light of the factor gained by relative kinetic energy of each story divided by the total relative kinetic energy. The proposed methods are compared with the uniform distribution method. Numerical study has indicated that all three distribution methods adopted for two retrofit methods can achieve the desired added damping ratio so that the seismic responses of the retrofitted structure can be effectively reduced. The study also shows that to distribute the viscous damping coefficient to efficient stories is again an effective and efficient design method.

摘要 i Abstract iii 誌謝 v 目錄 vii 符號索引 xi 表目錄 xv 圖目錄 xxvii 第一章 緒論 1 1.1 研究背景及目的 1 1.2 研究重點與內容 4 第二章 含黏性阻尼器減震結構之設計理論 7 2.1 前言 7 2.1 液態黏性阻尼器之介紹及力學性質 7 2.1.1 液態黏性阻尼器之介紹 7 2.1.2 液態黏性阻尼器之力學性質 8 2.2 含液態黏性阻尼器結構之等效阻尼比 9 2.2.1 結構系統中各桿件所貢獻之阻尼比 9 2.2.2 黏性阻尼器所提供之阻尼比 10 2.2.3 含黏性阻尼系統結構之有效阻尼比 11 2.2.4 含線性黏性阻尼器之有效阻尼比 12 2.2.5 含非線性黏性阻尼器之有效阻尼比 15 2.2.6 液態黏性阻尼器之設計 18 2.2.6.1 線性黏性阻尼器之阻尼常數設計公式 18 2.2.6.2 非線性黏性阻尼器之阻尼常數設計公式 19 第三章 黏性阻尼器阻尼係數之分配理論 21 3.1 研究背景與構想 21 3.2 現存之分配方法 21 3.2.1 阻尼常數採平均分配之方法(Uniform Distribution, UD) 22 3.2.2 阻尼常數依樓層層剪力分配之方法(Story Shear Proportional Distribution (SSPD) 23 3.2.3 簡化序列搜尋法(Simplified Sequential Search Algorithm, SSSA) 25 3.3 建議之分配公式 30 3.3.1 阻尼常數依樓層剪力應變能分配之方法(Distribution Based on Story Shear Strain Energy, SSSE) 30 3.3.2 根據阻尼常數依樓層剪力應變能分配於有效樓層之方法(Distribution Based on SSSE to Efficient Stories, SSSEES) 33 第四章 二維構架模型之設計與推導公式之應用 37 4.1 SAP2000N對黏性阻尼器之模擬與輸入地震資料之選用 37 4.2 二維實尺寸立面規則型十層樓結構 38 4.2.1 二維立面規則型十層樓結構之黏性阻尼系統設計 39 4.2.1.1 規則型十層樓結構裝置黏性阻尼器之阻尼常數依五種方法計算之比較與探討 39 4.3二維實尺寸具二層軟層之立面不規則十層樓結構 41 4.3.1 具二層軟層之二維立面不規則十層樓結構之黏性阻尼系統設計 42 4.3.1.1 具軟層立面不規則十層樓結構裝置黏性阻尼器之依五種方法計算之比較與探討 42 4.4 具Setback building形式二維實尺寸立面不規則之十二樓層結構 43 4.4.1 具Setback building立面不規則形式十二樓層結構之黏性阻尼系統設計 44 4.4.1.1 具Setback building立面不規則形式十二樓層結構之阻尼常數依五種方法計算之比較與探討 45 4.5 結構地震力反應之比較 46 4.6 線性黏性阻尼器識別阻尼比之方式 47 4.7 SAP2000N分析線性黏性阻尼器內接於二維結構之結果 48 4.7.1 立面規則型十層樓結構裝設線性黏性阻尼器之動力歷時分析 48 4.7.2 具二層軟層之立面不規則十層樓結構裝設線性黏性阻尼器之動力歷時分析 51 4.7.3 具Setback building形式立面不規則之十二樓層結構裝設線性黏性阻尼器之動力歷時分析 53 4.8 SAP2000N分析非線性黏性阻尼器內接於二維結構之結果 54 4.8.1 立面規則型十層樓結構裝設非線性黏性阻尼器之動力歷時分析 54 4.8.2 具二層軟層之立面不規則十層樓結構裝設非線性黏性阻尼器之動力歷時分析 56 4.8.3 具Setback building形式立面不規則之十二層樓結構裝設非線性黏性阻尼器之動力歷時分析 58 第五章 外接黏性阻尼器於醫院結構耐震補強之應用 61 5.1 研究緣由與目的 61 5.2 外接式黏性阻尼器之設計構想與理論概述 65 5.3 有效模態質量 66 5.4 銜接單枝黏性阻尼器於相鄰兩單自由度系統之阻尼比推導 69 5.5 系統整體有效阻尼比之分析與設計 74 5.6 線性黏性阻尼器設計公式驗證(I) 77 5.6.1 二維待補強結構與反力構架之介紹 77 5.6.2 補強方法1:以十層樓反力鋼構架銜接線性黏性阻尼器於相鄰十層樓規則型結構 77 5.6.3 補強方法2:以五層樓反力鋼構架銜接線性黏性阻尼器於相鄰十層樓規則型結構 78 5.6.4 線性黏性系統阻尼比識別結果之探討 79 5.7 外接式黏性阻尼器之阻尼常數沿樓層高分配公式之推導 81 5.7.1 外接式黏性阻尼器之阻尼常數依平均分配之方法(Uniform Distribution, UD) 83 5.7.2 外接式黏性阻尼器之阻尼常數依樓層相對動能分配之方法(Distribution Based on Story Kinetic Energy, SKE) 84 5.7.3 外接式黏性阻尼器之阻尼常數依樓層相對動能分配於有效樓層之方法(Distribution Based on SKE to Efficient Stories, SKEES) 86 5.8 線性黏性阻尼器設計公式驗證(II) 87 5.8.1 兩種補強方法之三種黏性阻尼器分配方法之計算 88 5.8.2 兩種補強方法於三種黏性阻尼器分配方法的系統阻尼比之識別結果 89 第六章 外接式黏性阻尼器之補強方法的動力分析與探討 91 6.1 三維實尺寸規則型八層樓結構與反力鋼構架之介紹 91 6.2 外接式黏性阻尼器之補強方法的線性黏性阻尼器設計 92 6.2.1 補強方法1:以八層樓反力鋼構架銜接線性黏性阻尼器於相鄰八層樓規則型結構 92 6.2.2 補強方法2:以八層樓反力鋼構架銜接線性黏性阻尼器於相鄰四層樓規則型結構 94 6.3 外接式黏性阻尼器之補強方法的動力分析與探討 94 6.3.1 補強方法1 95 6.3.2 補強方法2 97 第七章 結論與建議 99 參考文獻 103 附錄 332 A. 規則型結構耐震擬靜力設計 332 B. 具軟層之結構耐震擬靜力設計 338 C. Setback Building耐震擬靜力設計 344 D. 三維規則型八層樓結構耐震擬靜力設計 350

[1] FEMA, NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 273 and 274, October, Washington, D.C. (1997)
[2] FEMA, NEHRP Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Report No. 356, November, Washington, D.C. (2000)
[3] FEMA, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Reports No.368, Washington, D.C. (2001)
[4] FEMA, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Reports No.369, Washington, D.C. (2001)
[5] Whittaker, A., Bertero, V. V., and Thompson, C., “Earthquake Simulator Testing of Steel Plate Added Damping and Stiffness Elements,” UCB/EERC-89/02, EERC, U.C. Berkeley. (1989)
[6] 蔡克銓,”三角形鋼板消能器之理論試驗與應用”,結構工程第八卷第四期,pp.3~19 (1993)。
[7] 陳正誠,「韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計」,中華民國結構工程學會,結構工程,第15卷第1期,pp. 53-78 (2000)。
[8] Aiken, I., Clark, P., Tajirian, F., Kimura, I., and Ko, E., “Unbonded Braces in the United States — Design Studies, Large-scale Testing and the First Building Application,” Symposium of Passive Control Structure – 2000, Tokyo Institute of Technology, pp.203~217. (2000)
[9] Iwata, M., Kato, T., and Wada, A., “Buckling-Restrained Braces as Hysteretic Dampers.” Symposium of Passive Control Structures – 2000, Tokyo Institute of Technology, pp. 175~180. (2000)
[10] Tanaka, K., and Sasaki, Y., “Hysteretic Performance and Its Estimation of Shear Panel Dampers using Low Yield Strength Steel,” Symposium of Passive Control Structures—2000,Tokyo Institute of Technology, pp.181~196. (2000)
[11] 陳生金、候信逸,“低降伏強度剪力消能裝置之耐震行為”,台灣科技大學碩士論文 (1999)。
[12] Constantinou, M. C., and Symans, M. D., “Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers,” Report No. NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, New York. (1992)
[13] Pekan, G., Mander, J. B. and Chen, S. S. “Fundamental Considerations for The Design of Nonlinear Viscous Damper,” Earthquake Engineering and Structural Dynamics, Vol.28, pp.1405-1425, (1999)
[14] Fu, Y. and Kasai, K. “Comparative Study of Frames Using Viscoelastic and Viscous Damper.” Journal of structural Engineering, ASCE, Vol.124, No.5, pp.513-522. (1998)
[15] 黃震興、黃尹男,“使用線性黏性阻尼器建築結構之耐震試驗與分析”,國家地震工程研究中心報告NCREE-01-022 (2001)。
[16] 黃震興、黃尹男、洪雅惠,“含非線性黏性阻尼器結構之減震試驗與分析”,國家地震工程研究中心報告NCREE-02-020 (2002)。
[17] Dargush, G. F., Green, M. L., Wang, Y., and Hu, Y. “Evolutionary methodologies for decision support,” MCEER-04- SP01, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY. (2004)
[18] Dargush, G. F., and Sant, R. S. “Evolutionary aseismic design and retrofit of structures with passive energy dissipation,” Earthquake Engineering and Structural Dynamics, 34, 1601-1626. (2005)
[19] Singh, M. P., and Moreschi, L. M. “Optimal placement of dampers for passive response control,” Earthquake Engineering and Structural Dynamics, 31, 955-976. (2002)
[20] Wongprasert, N., and Symans, M. D. “Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building,” Journal of Engineering Mechanics, 130(4), 401-406. (2004)
[21] Garcia, D. L., “A simple method for the design of optimal damper configurations in MDOF structures,” Earthquake Spectra, 17(3), 387-398. (2001)
[22] Garcia, D. L. and Soong, T. T., “Efficiency of a simple approach to damper allocation in MDOF structures,” Journal of Structural Control, 9(1), 19-30. (2002)
[23] Pekcan, G., Mander, J. B. and Chen, S. S., “Design and retrofit methodology for building structures with supplemental energy dissipating systems,” Report No. MCEER-99-0021, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, New York. (1999)
[24] Soong, T. T., and Constantinou, M. C., “Passive and Active Structural Vibration Control in Civil Engineering,” Springer-Verlag, New York. (1994)
[25] Raggett, J. D., “Estimating Damping of Real Structures,” Journal of the structural division, ASCE, Sept. (1975)
[26] Chopra, A. K., Dynamics of Structures, Prentice-Hall, New Jersey. (1995)
[27] Ramirez, O. M., Constantinou, M. C., Kircher, C. A., Whittaker, A., Johnson, M. and Gomez, J. D., “Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive Energy Dissipation Systems,” Technical Report MCEER-00-0010, Multidisciplinary Center for Earthquake Engineering Research, University of Buffalo, State University of New York, Buffalo, NY. (2000)
[28] Seleemah, A. A., and Constantinou, M. C., “Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers,” Report No. MCEER-97-0004, National Center for Earthquake Engineering Research, Buffalo, New York. (1997)
[29] Hwang, J. S., Huang, Y. N., Yi, S. L. and Ho, S. Y., “Design formulations for supplemental viscous dampers to building structures,” Journal of Structural Engineering, ASCE, 134(1), 22-31. (2008)
[30] Pekcan, G., Mander, J. B. and Chen, S. S.,“Experimental Investigation and Computational Modeling of Seismic Response of a 1:4 Scale Model Steel Structure with a Load Balancing Supplemental Damping Systems,” MCEER-99-0006, State University of New York at Buffalo, New York. (1999)
[31] Mathur, S. and Sajal, K. D., “Seismic response control of RC setback building with friction dampers,” Indian Concrete Journal, 77(11), 1469-1472. (2003)
[32] Chintanapakdee, C. and Chopra, A. K., “Seismic response of vertically irregular frames: response history and modal pushover analyses,” Journal of Structural Engineering, ASCE, 130(8), 1177-1185. (2004)
[33] Stefano, M. D. and Pintucchi, B., “A review of research on seismic behavior of irregular building structures since 2002,” Bulletin of Earthquake Engineering, 6(2), 285-308. (2008)
[34] Johnson, C. D. and Kienholz, D. A., “Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers,” AIAA Journal. (1982)
[35] SAP2000 Analysis Reference Volume 1, Computers and Structures, Inc., Berkeley, California, (1996)
[36] 黃震興、何松晏,“使用黏性阻尼器減震結構設計公式修正(II)”,國家地震工程研究中心報告NCREE-04-009 (2004)。
[37] Performance Based Seismic Engineering of Buildings, Structural Engineers Association of California Sacramento, California. (1995)
[38] Gordon, C. G., “Generic criteria for vibration-sensitive equipment,” Proceedings of International Society for Optical Engineering 1619, 71-85, San Jose, California. (1991)
[39] Kasai K. and Maison B. F., “Dynamics of pounding when two buildings collide,” Earthquake Engineering and Structural Dynamics, 21, 771-786. (1992)
[40] Gurley, K. A., Kareem A. and Bergman L. A., “Johnson, E.A. and Klein, R.E. Coupling tall buildings for control of response to wind,” Structural Safety & Reliability, 1553-1560. (1994)
[41] Abe, M. and Igusa, T., “Tuned mass dampers for structures with closely spaced natural frequencies,” Earthquake Engineering and Structural Dynamics, 24, 247–261. (1995)
[42] Luco, J. E. and Barros, F. C. P. D., “Optimal damping between two adjacent elastic structures,” Earthquake Engineering and Structural Dynamics, 27, 649–659. (1998)
[43] Bhaskararao, A. V. and Jangid, R. S., “Seismic analysis of structures connected with friction dampers,” Engineering Structures, 28, 690–703. (2006)
[44] Abdullah, M. M., Hanif, J. H., Richardson, A. and Sobanjo, J., “Use of a shared tuned mass damper (STMD) to reduce vibration and pounding in adjacent structures,” Earthquake Engng Struct. Dyn., 30, 1185–1201. (2001)
[45] Luco, J. E. and Barros, F. C. P. D., “Optimal damping between two adjacent elastic structures,” Earthquake Engineering & Structural Dynamics, 27(7): 649-659. (1998)
[46] Xu, Y. L., He, Q. and Ko, J. M., “Dynamic response of damper-connected adjacent buildings under earthquake excitation,” Engineering Structures, 21(2): p. 135-148. (1999)
[47] Hwang, J. S., Chang, K. C. and Tsai, M. H., “Composite damping ratio of seismically isolated regular bridges,” Engineering Structure, Vol .19. NO. 1.pp. 55-62. (1997)
[48] Veletsos, A. S. and Ventura, C. E., “Modal Analysis of non-classically damped linear systems,” Earthquake Engineering and Structural Dynamics. VOL.14, 217-243. (1986)
[49] 鍾立來“結構主動控制之狀態空間系統”,結構工程 第八卷 第二期 民國八十二年六月,第89~98頁。
[50] Zhang, W. S. and Xu, Y. L., “Dynamic characteristics and seismic response of adjacent buildings linked by discrete dampers,” Earthquake Engineering & Structural Dynamics, 28(10): p. 1163-1185. (1999)
[51] Ni, Y. Q., Ko, J. M. and Ying, Z. G., “Random Seismic Response Analysis of Adjacent Buildings Coupled with Non-Linear Hysteretic Dampers,” Journal of Sound and Vibration, 246(3): p. 403-417. (2001)
[52] Bhaskararao, A. V. and Jangid, R. S., “Optimum viscous damper for connecting adjacent SDOF structures for harmonic and stationary white-noise random excitations,” Earthquake Engineering & Structural Dynamics, 36(4): p. 563-571. (2007)
[53] Xu, Y. L., Zhan, S., Ko, J. M. and Zhang W. S., “Experimental investigation of adjacent buildings connected by fluid damper,” Earthquake Engineering & Structural Dynamics, 28(6): p. 609-631. (1999)
[54] Zhang, W. S. and Xu, Y. L., “Vibration Analysis of Two Buildings Linked By Maxwell Model-Defined Fluid,” Journal of Sound and Vibration, 233(5): p. 775-796. (2000)
[55] Hwang, J. S., Wang, S. J., Huang, Y. N. and Chen, J. F.,“A seismic retrofit method by connecting viscous dampers for microelectronics factories,” Earthquake Engineering & Structural Dynamics, 36(11): 1461-1480. (2007)
[56] Chopra, A. K., Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall. (2000)
[57] Hwang, J. S., Lin, W. C. and Wu, N. J., “Comparison of distribution methods for viscous damping coefficients to buildings,” Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance. (2010)
[58] Zhang, R. H. and Soong, T. T., “Seismic design of viscoelastic dampers for structural applications,” Journal of Structural Engineering, ASCE, 118 (5), 1375-1392. (1992)
[59] Chang, F. Y. and Pantelides, C. P., “Optimal placement of actuators for structural control,” Technical Report NCEER-88-0037, National Center for Earthquake Engineering Research, Buffalo, NY. (1988)

QR CODE