簡易檢索 / 詳目顯示

研究生: 劉育承
Yu-Cheng Liu
論文名稱: AZ91D鎂合金切屑廢料作為儲氫材料之儲氫性質與改質
Waste AZ91D magnesium alloy chip as hydrogen storage material: its hydrogen storage properties and modification
指導教授: 丘群
Chun Chiu
口試委員: 黃崧任
Song-Jeng Huang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 113
中文關鍵詞: AZ91D鎂合金鎂基儲氫材料鎂-銦固溶體機械合金法
外文關鍵詞: AZ91D alloy, Mg-based hydrogen storage materials, Mg-In solid solution, Mechanical alloying
相關次數: 點閱:267下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究將AZ91D鎂合金機械加工切屑,暴露在空氣中不同時間後,透過機械合金法將其製備成鎂合金粉末,並在製程中加入10 mol% In金屬粉末及5 wt% NbF5,希望能同時改善鎂基儲氫合金之熱力學及動力學問題。研究發現:鎂合金切屑放置時間並不會明顯影響其儲氫性質,儲氫量皆可達約6 wt%;而加入In之AZ91D鎂合金切屑粉末,在375°C 及5.3 MPa氫氣壓力下,會出現鎂銦化合物,使儲氫量下降至3 wt%,若再加入NbF5,其吸氫量會略為上升,然而,卻會導致放氫速率相較於僅加10 mol% In慢。NbF5同時也會影響In固溶進Mg之固溶反應,導致In對Mg之熱力學性質改善有限。從DTA檢測結果發現:有添加物之AZ91D鎂合金粉末相較於無添加物之AZ91D鎂合金粉末之動力學大幅提升,降低了放氫溫度。


AZ91D alloy powders were prepared by mechanical milling of waste AZ91D alloy chips with different air exposure times. During the milling process, 10 mol% of In metal powder and 5 wt% of NbF5 were added to investigate the feasibility of thermodynamic destabilization and kinetic improvement of Mg-based hydrogen storage materials. We found that air exposure time has no significant effect on hydrogen storage property. The reversible hydrogen storage capacities for AZ91D alloy powders with different air exposure times are all around 6 wt%. For the AZ91 alloy powders added with 10 mol% of In, Mg-In intermetallic compounds are formed after hydrogenation at 375°C under 5.3 MPa of hydrogen, which result in a reduced hydrogen capacity of 3 wt%. The hydrogen capacity bounces back slightly after 5 wt% of NbF5 is added into the 10 mol%-In-contained AZ91D powder. However, the hydrogen desorption time increases after adding 5 wt% of NbF5, which is known as a good catalyst for MgH2. XRD results also show that addition of 5 wt% of NbF5 reduces the amount of Mg(In) solid solution, which lowers the effect of thermodynamic destabilization produced by addition of In in the Mg-based alloys. DTA results show AZ91D alloy powder added with 10 mol% of In has lower hydrogen desorption temperature than that of pure AZ91D alloy powder. The hydrogen desorption temperature could further reduce if 5 wt% of NbF5 is added.

中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 8 2.1儲氫技術與方法 8 2.1.1高壓氣態儲氫(High Pressure Storage) 10 2.1.2低溫液態儲氫(Liquid Hydrogen Storage) 12 2.1.3固態儲氫(Solid State Ttorage) 13 2.1.3.1固態儲氫分類 14 2.2儲氫合金吸放氫原理介紹 16 2.2.1動力學性質 17 2.2.2熱力學性質 19 2.2.2.1 PCI曲線及儲氫材料相關特性 21 2.3固態儲氫合金 24 2.3.1 AXBY型儲氫合金 24 2.3.2鎂及鎂基儲氫材料 28 2.3.2.1氫化鎂儲氫性質 28 2.3.2.2添加合金元素的影響 29 2.3.2.3 Kissinger活化能計算 30 2.3.3機械合金法 32 2.3.3.1機械合金法製備金屬粉末 32 2.3.3.2不同參數對機械合金法的影響 35 2.4 鎂合金的介紹 41 2.4.1 AZ91鎂合金介紹 41 2.4.2鎂合金之命名 41 2.4.3 合金元素對鎂合金的影響 44 2.4.4鎂合金的工業運用及廢料 45 2.4.5 鎂合金廢料回收的方法 48 2.4.4鎂合金廢料做為儲氫材料的研究 49 第三章 實驗方法 52 3.1實驗流程 53 3.2實驗材料與粉末製備 54 3.2.1放置實驗 55 3.2.2機械合金法 55 3.2.3摻入添加物 57 3.3 SEM掃描式電子顯微鏡與分析 59 3.3 粒徑分析量測 60 3.5 X-Ray 繞射儀與分析 61 3.6 Sievert-type 吸放氫量測系統與分析 62 3.6.1實驗前置作業 64 3.6.2實驗參數設定 65 3.7差式熱分析儀(DTA)及熱分析 66 第四章 結果與討論 67 4.1材料之微觀形貌及粒徑分析 67 4.1.1 合金切屑及粉末樣貌觀察 68 4.1.2 粒徑分析 76 4.2吸/放氫循環之動力學及其穩定性測定 78 4.3相鑑定與晶體結構分析(XRD) 89 4.3.1組成與相變化 89 4.3.2固溶體與熱力學性質 95 4.5 DTA熱分析 100 第五章 結論 106 參考文獻 108

[1] L. Schlapbach and A. Züttel, "Hydrogen-storage materials for mobile applications," Nature, vol. 414, no. 6861, pp. 353-358, 2001.
[2] J.M. Ogden, "Hydrogen: The fuel of the future?," Physics Today, vol. 55, no. 4, pp. 69-75, 2002.
[3] T. Riis, E.F. Hagen, P.J.S. Vie and Ø. Ulleberg, "Hydrogen Production And Storage--R&D Priorities And Gaps," Hydrogen Implementing Agreement, OECD/IEA, Paris, p. 6, 2006.
[4] M. Zhu, Y. Lu, L. Ouyang and H. Wang, "Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review," Materials, vol. 6, no. 10, pp. 4654-4674, 2013.
[5] C. Zhou, Z.Z. Fang, J. Lu, X. Luo, C. Ren, P. Fan, Y. Ren and X. Zhang, "Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys," The Journal of Physical Chemistry C, vol. 118, no. 22, pp. 11526-11535, 2014.
[6] J. Xin, J. Wang, Y. Du, L. Sun and B. Huang, "Site preference and diffusion of hydrogen during hydrogenation of Mg: A first-principles study," International Journal of Hydrogen Energy, vol. 41, no. 5, pp. 3508-3516, 2016.
[7] V.D. Dobrovol's'kyi, O.H. Ershova and Y.M. Solonin, "Thermal Resistance and the Kinetics of Hydrogen Desorption from Hydrides of the Mg–Al–Ni–Ti Mechanical Alloy," Materials Science, vol. 51, no. 4, pp. 457-464, 2016.
[8] A. Andreasen, "Hydrogenation properties of Mg–Al alloys," International Journal of Hydrogen Energy, vol. 33, no. 24, pp. 7489-7497, 2008.
[9] D.J. Durbin and C. Malardier-Jugroot, "Review of hydrogen storage techniques for on board vehicle applications," International Journal of Hydrogen Energy, vol. Vol. 38, no. 34, pp. 14595-14617, 2013.
[10] A. Züttel, "Hydrogen storage methods," Naturwissenschaften, vol. 91, no. 4, pp. 157-172, 2004.
[11] G. Sandi, "Hydrogen storage and its limitations," The Electrochemical Society Interface, vol. 13, no. 3, pp. 40-44, 2004.
[12] L. Zhou, "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, vol. 9, no. 4, pp. 495-408, 2005.
[13] U. Bossel, B. Eliasson and G. Taylor, "The Future of the Hydrogen Economy:Bright or Bleak?," in the Fuel Cell Seminar, Florida, November 3-7, 2003.
[14] R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, J.M. G. Sousa, A.L. C. Ferreira, J. Campos and J. Gracio, "Hydrogen Storage for Energy Application," Ch. 10, in: J. Liu (Ed.), Hydrogen Storage, Intech Open, pp. 243-266, 2012.
[15] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D. S.Bethune and M. J. Heben, "Storage of hydrogen in single-walled carbon nanotubes," Nature, vol. 386, no. 6623, pp. 377-379, 1997.
[16] B. Sakintuna, F. Lamaridarkrim and M. Hirscher, "Metal hydride materials for solid hydrogen storage: A review," International Journal of Hydrogen Energy, vol. 32, no. 9, pp. 1121-1140, 2007.
[17] P. Ferrin, S. Kandoi, A.U. Nilekar and M. Mavrikakis, "Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study," Surface Science, vol. 606, no. 7-8, pp. 679-689, 2012.
[18] M. Martin, C. Gommel, C. Borkhart and E. Fromm, "Absorption and desorption kinetics of hydrogen storage alloys," Journal of Alloys and Compounds, vol. 238, no. 1-2, pp. 193-201, 1996.
[19] M. Yamaguchi and E. Akiba, "Ternary Hydrides," in: K.H.J. Buschow (Ed.), Electronic and Magnetic Properties of Metals and Ceramics Part II , Vol. 3B, Weinheim VCH, pp. 333-398, 1994.
[20] A. Züttel, "Materials for hydrogen storage," materialstoday, vol. 6, no. 9, pp. 24-33, 2003.
[21] G. Sandrock, "Panoramic overview of hydrogen storage alloys from a gas reaction point of view," Journal of Alloys and Compounds, vol. 293, pp. 877-888, 1999.
[22] T. Graham, "On the Relation of Hydrogen to Palladium," Journal of the Chemical Society, vol. 22, pp. 256-266, 1869.
[23] K. Hong, "The development of hydrogen storage electrode alloys for nickel hydride batteries," Journal of Power Sources, vol. 96, no. 1, pp. 85-89, 2001.
[24] 江承恩,“Mg2(Cu1-xNix)儲氫合金結構與吸放氫特性之研究”,碩士論文,國立中央大學材料科學與工程研究所,2007。
[25] 楊愛民,“添加鐵、鈷粉末及晶粒尺度對氫化鎂高溫吸放氫之作用”,碩士論文,國立臺灣科技大學機械工程系,2015。
[26] J.J. Reilly and R.H. Wiswall, "Formation and Properties of Iron Titanium Hydride," Inorganic Chemistry, vol. 13, no. 1, pp. 218-222, 1974.
[27] F. Stein, M. Palm and G. Sauthof, "Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability," Intermetallics, vol. 12, no. 7-9, pp. 713-720, 2004.
[28] G. Liang, "Synthesis and hydrogen storage properties of Mg-based alloys," Journal of Alloys and Compounds, vol. 370, no. 1-2, pp. 123-128, 2004.
[29] H. Yu, S. Bennici and A. Auroux, "Hydrogen storage and release: Kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles," International Journal of Hydrogen Energy, vol. 39, no. 22, pp. 11633-11641, 2014.
[30] R.A. Varin, T. Czujko and Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, Springer Science & Business Media, 2009.
[31] J. Cermak and B. David, "Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen desorption from MgH2," International Journal of Hydrogen Energy, vol. 36, no. 21, pp. 13614-13620, 2011.
[32] N. Recham, V.V. Bhat, M. Kandavel, L. Aymard, J.M. Tarascon and A. Rougier, "Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition," Journal of Alloys and Compounds, vol. 464, no. 1-2, pp. 377-382, 2008.
[33] A. Aboulkas and K.E. Harfi, "Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen," Oil Shale, vol. 25, no. 4, pp. 426-443, 2008.
[34] R.L. Blaine and H.E. Kissinger, "Homer Kissinger and the Kissinger equation," Thermochimica Acta, vol. 540, pp. 1-6, 2012.
[35] C. Suryanarayana, "Recent developments in mechanical alloying," Reviews on Advanced Materials Science, vol. 18, no. 3, pp. 203-211, 2008.
[36] A. Zaluska, L. Zaluski and J.O. Strom-Olsen, "Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni," Alloys and Compounds, vol. 289, no. 1-2, pp. 197-206, 1999.
[37] C. Suryanarayana, E. Ivanov and V.V. Boldyrev, "The science and technology of mechanical alloying," Materials Science and Engineering A, vol. 304-306, no. 1-2, pp. 151-158, 2001.
[38] N. Hanada, T. Ichikawa, S.-I. Orimo and H. Fujii, "Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2," Journal of Alloys and Compounds, vol. 366, no. 1-2, pp. 269-273, 2004.
[39] C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science, vol. 46, no. 1-2, pp. 1-184, 2001.
[40] Sigma-Aldrich, "Mechanical Processing in Hydrogen Storage Research and Development."
[41] D.L. Zhang, "Processing of advanced materials using high-energy mechanical milling," Progress in Materials Science, vol. 49, no. 3-4, pp. 537-560, 2004.
[42] K. Yamada and C.C. Koch, "The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition," Journal of Materials Research, vol. 8, no. 6, pp. 1317-1326, 1993.
[43] 上海中博重工机械有限公司,“高能球磨机的分类和工作原理”,資料來源:http://www. .chinasszg.com/news.asp? articleid =1809.
[44] F. Hosseini-Gourajoubi, M. Pourabdoli, D. Uner and S. Raygan, "Effect of process control agents on synthesizing nano-structured 2Mg–9Ni–Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2," Advanced Powder Technology, vol. 26, no 2, pp. 448-453, 2015.
[45] Y.F. Zhang, L. Lu and S.M. Yap, "Prediction of the amount of PCA for mechanical milling," Journal of Materials Processing Technology, vol. 89-90, pp. 260-265.
[46] M.M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, pp. 3-43, 1999.
[47] 陳莘樺,“改善鎂合金及鎂基複合材料AZ61/SiCp 鑄錠品質並探討製程對其機械性質的影響”,碩士論文,國立臺灣科技大學機械工程, 2013。
[48] 朱育志,“藉由析出處理提升AZ91D 鎂合金壓鑄件之高溫機械性質”,碩士論文,大同大學材料工程研究所,2008。
[49] 金屬工業研究發展中心,“金屬材料快報─鎂,”資料來源: http://www.tami.org.tw/cindex.php,2015。
[50] 經濟部工業局,鎂合金成型產業資源化應用技術手冊,初版,工業局出版,2006。
[51] C. Pistidda, N. Bergemann, J. Wurr, A. Rzeszutek, K.T. Mller, B.R.S. Hansen, S. Garroni, C. Horstmann, C. Milanese, A. Girella, O. Metz, K. Taube, T.R. Jensen, D. Thomas, H.P. Liermann, T. Klassen and M. Dornheim, "Hydrogen storage systems from waste Mg alloys," Journal of Power Sources, vol. 270, pp. 554-563, 2014.
[52] S.D. House, J.J. Vajo, C. Ren, A.A. Rockett and I.M. Robertson, "Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials," Acta Materialia, vol. 86, pp. 55-68, 2015.
[53] C. Zhou, Z.Z. Fang and P. Sun, "An experimental survey of additives for improving dehydrogenation properties of magnesium hydride," Journal of Power Sources, vol. 278, pp. 38-42, 2015.
[54] 房文斌,张文丛,于振兴,王德,“镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响”,稀有金属材料与工程,第34卷, 第7期,頁1017-1020,2005。
[55] H. Nie, M. Schoenitz and E.L. Dreizin, "Oxidation of Magnesium: Implication for Aging and Ignition," The Journal of Physical Chemistry C, vol. 120, no. 2, pp. 974-983, 2016/01/21 2016.
[56] H.B. Yao, Y. Li and A.T.S. Wee, "XPS investigation of the oxidation/corrosion of melt-spun Mg," Applied Surface Science, vol. 158, no. 1, pp. 112-119, 2000.
[57] W. Peng, Z. Lan, W. Wei, L. Xu and J. Guo, "Investigation on preparation and hydrogen storage performance of Mg17Al12 alloy," International Journal of Hydrogen Energy, vol. 41, no. 3, pp. 1759-1765, 2016.
[58] H.C. Zhong, H. Wang and L.Z. Ouyang, "Improving the hydrogen storage properties of MgH2 by reversibly forming Mg–Al solid solution alloys," International Journal of Hydrogen Energy, vol. 39, no. 7, pp. 3320-3326, 2014.

QR CODE