簡易檢索 / 詳目顯示

研究生: 李建霖
Chien-Lin Li
論文名稱: 地下電纜長度與交錯接地系統差異之影響分析
Analysis of the Impact from the Difference of Underground Cables Length and Cross-Bonding Grounding System
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 郭政謙
Cheng-Chien Kuo
張宏展
Hong-Chan Chang
張建國
Chien-Kuo Chang
陳鴻誠
Hung-Cheng Chen
黃維澤
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: 地下電纜ATPDraw交錯接地雷擊突波開關突波
外文關鍵詞: Underground Cable, ATPDraw, Cross-Bonding grounding, Lightning Surge, Switching Surge
相關次數: 點閱:49下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於台灣的工商業與高科技產業蓬勃發展,使得各方面的電力需求持續增長,因此國內電力公司必須興建各種電力設施來因應;雖然電力為國家經濟發展的重要基石,但是輸配電系統的發展速度並不及發電端與負載端,使得既設線路要負擔的送電容量越來越重;然而台灣從民國54年開始實施地下化電纜,來提高供電品質、降低天然災害影響、改善架空線路佔地過大與美化市容景觀,卻因為裝設於地底下,受限於環境、道路狹隘、線路架構及接地架構等因素而產生許多不良影響,像是地下電纜的送電電流與容量受到限制、環路架構導致同環路上的用戶在環路任一處發生故障時承受故障電流的風險大幅提高以及電纜遮蔽層在運轉及故障時皆會產生感應電壓及感應環流並注入接地系統等現象。上述種種因素對於電力品質、施工安全、敏感設備等皆有一定程度的影響,因此為了有效降低施工時程及經費支出並使得電網運作能逐步趨於穩健,在規劃線路路徑或是更改接線方式以前,需先考量施工後對電網可能造成之影響。
    有鑑於此,本論文將針對台灣地下電纜的正、副導體電纜遮蔽層之接地系統採對稱或不對稱交錯接地之影響進行研究,擬先蒐集並彙整國內外有關電纜遮蔽層之接地系統、突波暫態之相關國際標準、論文及資料,並著重探討接地系統採對稱及不對稱交錯接地設計下的暫態與穩態特性差異;透過ATPDraw模擬軟體建立線路模型及對多種情境進行評估,如接地模式與電纜長度對輸電容量、暫態突波、接地故障、短路故障等線路運行的影響,最後對模擬結果進行比較與分析,以供後續地下電纜接地設計之參考。


    In recent years, due to the vigorous development of industry , commerce and high-tech industries, all aspects of power demand keep growing. Thus, domestic power company must build a variety of power facilities to respond it. Although electric power is an important cornerstone of the country's economic development, the development pace of the transmission and distribution system is not as fast as the generation side and load side. This cause the existing lines to bear heavier and heavier transmission capacity. However, Taiwan began to implement underground cables from 1965 to enhance the quality of power supply, reduce the impact of natural disasters, improve the over-occupation of overhead lines and beautify the cityscape. Nevertheless, due to the underground cables are installed under the ground, and have constraints such as environment, narrow roads, line and grounding structures, result in many adverse influences . For example, the power transmission current and capacity of the underground cables are limited, the loop structure makes users in the same loop vulnerable to the failure of other users, and the cable shielding layer generates induced voltage and induced circulating current and injects into the grounding system. The above factors all influence on power quality, construction safety, sensitive equipment, etc. Therefore, in order to effectively reduce the construction time along with expenditure and make the power grid operation gradually become more stable, it is necessary to first consider the possible impact on the power grid after construction , before planning the cable line path or changing the wiring method.
    In view of this, the paper will study the impact of the primary and secondary conductor cable using symmetrical or asymmetrical cross- bonding for the grounding system of underground cables in Taiwan. First, it is planned to collect and aggregate relevant domestic and international standards, papers and materials related to grounding system of cable sheath layer and surge transients. The research will focus on exploring the differences in transient and steady-state characteristics under symmetric and asymmetric cross- bonding grounding designs. By using the ATPDraw simulation software to create cable line models and assess various scenarios, such as the impact of grounding type and cable length on transmission capacity, transient surges, grounding faults, short-circuit faults etc. Finally, comparing and analyzing the simulation results in order to provide a reference for subsequent underground cable grounding designs.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究範疇以及步驟 8 1.4 章節概述 9 第二章 突波及地下電纜綜述 10 2.1 地下電纜遮蔽層接地(連接)架構 10 2.2 開關突波 16 2.3 雷擊突波 17 2.4 電纜被覆保護裝置(C.C.P.U) / 護套電壓限制器(SVL) 19 2.5 遮蔽層感應電壓 21 第三章 線路模型建立及相關參數設定 23 3.1 前言 23 3.2 ATP-EMTP 23 3.3 線路基本元件 24 3.4 地下電纜模型與LCC 元件 25 3.5 非線性電阻(MOV)元件 29 3.6 開關元件與CIGRE雷擊突波產生器元件 31 3.7 故障電路模型 33 3.8 線路模型總結 34 第四章 模擬結果與分析 36 4.1 模擬介紹 36 4.2 模擬結果演示 37 4.3 小結 68 第五章 結論與未來研究方向 79 5.1 結論 79 5.2 未來研究方向 80 參考文獻 81

    [1] 黃佩君、林筑涵,「暴雨沖塌鐵塔 核一廠二號機發電機跳脫」,自由時報報導, 2017年6月,Available:
    https://news.ltn.com.tw/news/life/breakingnews/2086415
    [2] 林筑涵、花孟璟,「尼莎狂吹 和平電廠輸電塔倒塌 全台限電拉警報」,自由時報報導, 2017年7月,Available:
    https://news.ltn.com.tw/news/life/breakingnews/2147920
    [3] 台電成立之Facebook粉絲團貼文,2015年8月,Available:
    https://www.facebook.com/TaiwanPowerCompany/photos/a.430823640061/10155825109410062/?type=3
    [4] 曾智怡,「台灣電桿地下化速度領先日韓 保護線路免受颱風侵襲技術要點」,中央通訊社報導,2022年4月,Available:
    https://www.cna.com.tw/news/afe/202204100030.aspx
    [5] 李明學、王耀諄、謝建賢、胡榮聰、王春木、謝憲坤,「複導體電纜長度不對稱下對於送電容量之分析」,台電工程月刊793期,2014年9月
    [6] "IEEE Guide for Bonding Shields and Sheaths of Single-Conductor Power Cables Rated 5 kV through 500 kV," in IEEE Std 575-2014 (Revision of IEEE Std 575-1988) , vol., no., pp.1-83, 18 Sept. 2014, doi: 10.1109/IEEESTD.2014.6905681.
    [7] Christos G. Kaloudas, Theofilos A. Papadopoulos, Kostas V. Gouramanis, Konstantinos Stasinos, Grigoris K. Papagiannis, "Methodology for the selection of long-medium-voltage power cable configurations," in IET Gener. Transm. Distrib, Vol. 7, Iss. 5, pp. 526–536, May 2013, doi: 10.1049/iet-gtd.2012.0165.
    [8] Hongzhong Ma, Jingang Song, Xinrong Ni and Limin Zhang, "Analysis of induced voltage in metal shield of power cable and research on its restraining technology based on asymmetric state," 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 2008, pp. 948-951, doi: 10.1109/DRPT.2008.4523543.
    [9] 朱正宏,「特高壓地下環路之電纜遮蔽層及接地系統之電位及電流分佈特性研究」,中原大學碩士論文,2006年6月
    [10] Massimo Marzinotto , Giovanni Mazzanti , “ The Feasibility of Cable Sheath Fault Detection by Monitoring Sheath-to-Ground Currents at the Ends of Cross-Bonding Sections ” , IEEE Transactions on Industry Applications , Volume 51 , Issue: 6 , Nov.-Dec. 2015
    [11] Aritra Das, C. C. Reddy, “Investigations on Sheath Voltage and Current During Short-Circuited Condition On a Cross-Bonded Cable” , 2022 IEEE 10th Power India International Conference (PIICON)
    [12] H. Zong, Y. Liu and C. Zhao, "Analysis of Suppressing Methods and Influencing Factors of High Voltage Cable Circulating Current Based on ATP-EMTP," 2020 IEEE 3rd International Conference on Dielectrics (ICD), Valencia, Spain, 2020, pp. 633-636, doi: 10.1109/ICD46958.2020.9341884
    [13] W. He et al., "Diagnosis and Location of High-voltage Cable Fault Based on Sheath Current," 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 2018, pp. 3353-3359, doi: 10.1109/POWERCON.2018.8602318.
    [14] B. He, Y. Zhou, H. Li, T. Ye, S. Fan and X. Wang, "Fault Identification of High-voltage Cable Sheath Grounding System Based on Ground Current Analysis," 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 2020, pp. 3248-3251, doi: 10.1109/EI250167.2020.9347380.
    [15] IRENA (2023), Renewable power generation costs in 2022, International Renewable Energy Agency, Abu Dhabi.
    [16] M. Liebreich,"London summit 2017-Breaking Clean", Bloomberg New Energy Finance, September 2017.
    [17] 「德州風力發電機遭雷擊 風車變"風火輪"」,華視新聞報導, 2022年7月,Available:https://ctsnews.page.link/EBWk7
    [18] 台灣電力股份有限公司, 「各行政區每年每季雲對地落雷次數統計」,2023年8月, Available:https://data.gov.tw/dataset/9713
    [19] 林上博,「大型太陽光電發電廠之系統接地對保護協調及絕緣協調之影響及改善對策研究」,國立台北科技大學碩士論文,2019年6月
    [20] 吳侑軒,「大型太陽光電發電廠直流系統雷擊特性及其對絕緣協調及保護協調之影響研究」,國立台北科技大學碩士論文,2020年7月
    [21] 顏暐庭,「離岸風電系統變電站雷擊特性分析及其影響評估」,國立台北科技大學碩士論文,2021年6月
    [22] 周亦岑,「太陽光電發電廠直流系統附儲能蓄電池組之雷擊特性及其對保護協調影響研究」,國立台北科技大學碩士論文,2021年6月
    [23] 郭書維,「離岸風電系統受併接點附近電網架空線路雷擊之影響研究」,國立台北科技大學碩士論文,2021年6月
    [24] 蔡維軒,「離岸風場開關及雷擊突波特性分析及影響評估」,國立台北科技大學碩士論文,2015年7月
    [25] L. Cividino,"Power factor, harmonic distortion; causes,
    effects And considerations.", IEEE International Conference on Telecommunications Energy, 1992.
    [26] 沈柏丞、張嘉諳、許文華、張嘉舫,「高占比再生能源對電網影響初論」,臺灣能源期刊第5卷第4期,2018年12月
    [27] "IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications," in IEEE Std 446-1995 [The Orange Book] , vol., no., pp.1-320, 3 July 1996, doi: 10.1109/IEEESTD.1996.85950.
    [28] Horak, "Power Quality: Measurements of Sags and Interruptions," 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, USA, 2006, pp. 733-739, doi: 10.1109/TDC.2006.1668587.
    [29] "IEEE Std 4™-2013 Standard for High-Voltage Testing Techniques," IEEE, 2013.
    [30] Compatibility, Electromagnetic. "Part 4–5: Testing and Measurement Techniques—Surge Immunity Test." MS IEC 61000 (2005).
    [31] S. Sato; T. Harada; M. Hanai,” IEC 60060-1 requirements in impulse current waveform parameters”, 2005 International Power Engineering Conference, November 2005.
    [32] "Guide to Procedures for Estimating the Lightning Performance of Transmission Lines". CIGRE Working Group C4.23, October 1991.
    [33] 劉國才、陳盟仁、吳有基、葛世偉,「利用 TFlash 軟體分析輸電線路裝設避雷 器及改善遮蔽角對耐雷能力的影響」,工程科技與教育學刊,第10卷,第 4 期,2013,第396~403 頁
    [34] 黃郁峻。「避雷器裝設模式與地下電纜遮蔽層交錯接地不對稱對電力系統暫態突波之影響」。碩士論文,國立臺灣科技大學電機工程系,2023。
    [35] 顏世雄,「避雷工程講義」,全華圖書,2007年6月
    [36] 「高壓地下電纜之護套電壓限制器SVL額定計算」,委託執行報告,台灣科技大學,2019年5月
    [37] 「新竹~公園 系統圖核章」,台灣電力公司,2020年6月
    [38] 蕭勝文、陳永樂、劉國才、李河樟。〈南科地下電纜遮蔽層接地系統特性模擬與分析〉。《台電工程月刊》 (2011年)
    [39] Shiva Abdollahzadeh Ledari, Mohammad Mirzaie ,Sheath induced voltage prediction of high voltage cable based on artificial neural network, Computers & Electrical Engineering,Volume 87,2020
    ,106788,ISSN 0045-7906
    [40] "IEEE Guide for Safety in AC Substation Grounding," in
    ANSI/IEEE Std 80-1986 , vol., no., pp.1-370, 8 Aug. 1986, doi: 10.1109/IEEESTD.1986.81070.
    [41] 張家輔,「運用有限元素分析法於地下電纜動態熱容量之評估」,國立台灣科技大學電機工程系碩士論文,2019年6月。
    [42] 「161kV 交連 PE 電纜器材規範,台灣電力公司材料標準規範」編號:A046,台灣電力公司 輸配電工程處,民國 95 年 4 月。
    [43] 「新竹~公園 路徑概要圖」,台灣電力公司,2020年6月
    [44] Foruzan, E.; Akmal, A.A.S.; Niayesh, K.; Lin, J.; Sharma, D.D. Comparative study on various dielectric barriers and their effect on breakdown voltage. High Volt. 2018,3, 51–59.
    [45] 李永勳、黃調正,電力電纜耐壓試驗,碩士論文,台北:輔仁大學電子工程學研究所,2004。
    [46] "IEEE Standard for Insulation Coordination--Definitions, Principles, and Rules," in IEEE Std C62.82.1-2010 (Revision of IEEE Std 1313.1-1996) , vol., no., pp.1-22, 15 April 2011, doi: 10.1109/IEEESTD.2011.5754137.
    [47] 「文心-中西(白)161 kV交連PE電纜線路修復及電力系統操作面對接續匣故障的影響評估」,台灣電力公司合作研究計畫,聖約翰科技大學,2014年4月
    [48] 范振航。「二次變電所及饋線之雷擊及開關突波特性分析及其對低壓用戶之影響評估」。碩士論文,國立臺北科技大學電機工程系,2014。

    無法下載圖示
    全文公開日期 2029/01/12 (校外網路)
    全文公開日期 2029/01/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE