簡易檢索 / 詳目顯示

研究生: 柯亭佑
Ting - Yu Ke
論文名稱: 錳改質鐵礦載氧體用於丁酮燃化與脫硝製程整合之研究
Research of Manganese-Modified Iron Ore for MEK Gasification and Denitrification Process
指導教授: 郭俞麟
Yu - Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 130
中文關鍵詞: 化學迴路燃燒程序鐵礦有機溶劑載氧體脫硝反應
外文關鍵詞: Chemical Looping Combustion, Iron ore, Methyl Ethyl Ketone, Oxygen Carrier, Dentration
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴路程序是一種兼具低成本與高效率之新穎技術,並且可以兼顧環境友善與循環經濟之概念。近年來,隨著台灣之經濟與產業朝向高科技發展,孕育而生的是台灣越來越嚴重之半導體產業有機廢水與電力供應不足之問題。除此之外,台灣之發電越來越倚重以燃燒為主之火力發電,也因此造成嚴重之氮氧化物汙染之問題,也因此對台灣之環境形成嚴苛之考驗。
本研究係在探討化學迴路程序運用於高科技產業之有機廢溶劑丁酮之高溫裂解程序,並期過金屬氧化物載氧體作為觸媒增進其反應之效率,並能夠在後續之實驗中進行脫硝反應。本論文透過XRD、XRF、TGA以及實驗室級半套流體化床,先對鐵礦載氧體與經過參雜氧化錳過後之鐵礦載氧體進行材料組成與丁酮之合成氣產出評估,之後運行脫硝反應以評估其性能。
實驗結果表明,經過錳改質過後之鐵礦載氧體有效強化鐵礦氧化過程中之劣勢,並且運行半套流體化床時,載氧體皆能有效增進丁酮之熱裂解效率,在各個氧化相態可以提升碳轉化率6 - 43.1%不等,此外後之鐵礦載氧體在後續之脫硝性能方面,各個還原相態中,展現優於前之效果,並在實際模擬鍋爐尾氣的條件下可達到最佳之脫硝效果,整體系統之脫硝時間可以達到最長900秒的時間,本實驗最後也進行多次迴圈之連續脫硝實驗,並達到良好之脫硝效果,可供後續實場之運行參考。


Chemical looping process, a novel technology with low cost and high efficiency, can take into environmental friendliness and circular economy. In recent years, as economy and industry of Taiwan have turned into high-tech development, problems of organic wastewater and power supply in the semiconductor industry are getting more serious. Moreover, power generation of Taiwan is increasingly dependent on combustion-based thermal power generation, which has caused serious problems of nitrogen oxide pollution, and therefore has imposed a serious problem on environment of Taiwan.
The purpose of this research is to explore the high-temperature decomposition of the organic waste solvent methyl ethyl ketone used from the high-tech industry by chemical looping process, and the metal oxide is used as a catalyst to improve the efficiency of reaction. After doing decomposition process, oxygen carriers will carry on following process of denitration. In this paper, the material composition of iron ore oxygen carrier and iron ore oxygen carrier modified by doped manganese oxide and synthesis gas of MEK are firstly carried out through XRD, XRF, TGA and laboratory-scale. Denitration were conducted using iron ore and modified iron-ore in a semi-fluidized bed reactor and the results evaluated accordingly.
The experimental results show that the modified iron ore oxygen carrier can effectively strengthen the disadvantages of the iron ore in an oxidation process, and when running half of the fluidized bed, the oxygen carrier can effectively improve the thermal decomposition efficiency from 6% to 43.1%. In addition, in the subsequent denitrification performance of the iron ore carrier after modification, in each reduction phase state, it exhibits a better effect than the raw iron-ore, and can achieve the best desorption under the conditions of actual boiler exhaust gas condition, which can offer 900s non-NOx gas condition in reactor. A multi-round continuous denitration experiment was also carried out, and a good denitration effect was achieved, which can be used as a reference for subsequent real-field operation.

第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 5 2.1化學迴路燃燒程序 5 2.2 載氧體性質 8 2.2.1 氧化還原能力 8 2.2.2 載氧能力 11 2.2.3 抗團聚能力 12 2.2.4 機械強度 13 2.2.5 成本 14 2.2.6 環境友善 15 2.3 載氧體的選擇 15 2.3.1 鐵系載氧體 16 2.3.2 錳系載氧體 20 2.3.3銅系載氧體 23 2.3.4鎳系載氧體 24 2.3.5鈷系載氧體 26 2.3.6 鐵錳型載氧體 27 2.4天然礦石載氧體 28 2.4.1 鈦鐵礦 28 2.4.2 赤鐵礦 29 2.4.3錳礦 30 2.5 燃料種類與選擇 31 2.5.1 丁酮的熱裂解 31 2.6 氮氧化物生成途徑 33 2.6.1 熱式氮氧化物 34 2.6.2 燃料氮氧化物 36 2.6.3瞬間式氮氧化物 37 2.7 氮氧化物去除技術 38 2.7.1 燃燒前處理 39 2.7.1 A燃料除氮 39 2.7.1 B 燃料添加劑 39 2.7.1 C 燃料更換 40 2.7.2 燃燒中處理 40 2.7.2A 分段燃燒法 40 2.7.2B 煙道器循環法 41 2.7.2C 低氮氧化物燃燒器 41 2.7.3 燃燒後處理 41 2.7.3A 選擇性非觸媒還原法 42 2.7.3B 選擇性觸媒還原法 42 2.7 反應器種類 44 2.7.1固定床反應器 45 2.7.2流體化床反應器 46 2.7.3移動床反應器 48 第三章 實驗設備與儀器 49 3.1 實驗藥品 50 3.2 材料製備 52 3.2.1 鐵礦載氧體製備 52 3.2.2 鐵錳複合載氧體製備 52 3.3 實驗設備與分析儀器 54 3.3.1 X光繞射儀 54 3.3.2 X射線螢光光譜儀 55 3.3.3 熱重分析儀 56 3.3.4 場發射掃描式電子顯微鏡 57 3.3.5 實驗級半套式流體化床反應器 58 第四章 結果與討論 59 4.1 鐵礦載氧體 59 4.1.1 鐵礦與錳改質鐵礦之成分分析 59 4.1.2 鐵礦與錳改質鐵礦氧化與還原特性分析 63 4.1.3 鐵礦與鐵礦熱穩定性質分析 67 4.1.4 鐵礦與錳改質鐵礦多圈反應性質分析 68 4.2 鐵礦與錳改質鐵礦運用於化學迴路程序中之合成氣影響 72 4.2.1 丁酮於不同還原氣氛之下之碳轉化率探討 74 4.2.2 丁酮於流體化床中之多圈反應 82 4.3 鐵礦與錳改質鐵礦載氧體運用於化學迴路中之脫硝性評估 88 4.3.1 載氧體於不同濃度之丁酮還原態分析 88 4.3.2 錳改質鐵礦載氧體於不同氧氣濃度與不同氮氧化物濃度之反應探討 94 4.3.3 錳改質鐵礦載氧體多圈脫硝反應 105 4.3.4 反應機制探討 107 第五章 結論與未來展望 109 5.1 載氧體性質分析 109 5.2 載氧體對於丁酮裂解合成氣之影響 109 5.3 鐵礦與錳改質鐵礦載氧體運用於化學迴路中之脫硝性評估 110 5.4 未來展望 111 參考文獻 112

【1】 “【氣候變遷Q&A】 溫室氣體會滯留在大氣中多久? | 台灣環境資訊協會-環境資訊中心.”
【2】 U. S. E. P. A.Office, “Inventory of U.S. greenhouse gas emissions and sinks: 1990-2013,” Federal Register, vol. 80, no. 36. p. 9718, 2015.
【3】 BP, “Methodological changes,” Stat. Rev. World Energy, pp. 1–56, 2018.
【4】 J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L. F. DeDiego, “Progress in chemical-looping combustion and reforming technologies,” Progress in Energy and Combustion Science, vol. 38, no. 2. Pergamon, pp. 215–282, 2012.
【5】 李灝銘, “氮氧化物之防治技術簡介,” 2019.
【6】 S. Hurst, “Production of hydrogen by the steam-iron method,” Oil Soap, vol. 16, no. 2, pp. 29–35, 1939.
【7】 P. L. (Philip L.Teed, “chemistry and manufacture of hydrogen.” E. Arnold, 1919.
【8】 “Production of hydrogen by the steam‐iron metho Hurst, 1939.
【9】 W. K. Lewis , E. R. Gilliland, “Production of Pure Carbon Dioxide,” 1954.
【10】 L. S. Fan, L. Zeng, S. Luo, “Chemical-looping technology platform,” AIChE J., vol. 61, no. 1, pp. 2–22, 2015.
【11】 H. Ritcher, K. K. Costing, second law analysisOf, “Reversibility of combustion process,” ACS Symp. Ser , 1983.
【12】 T. Mattisson, A. Lyngfelt, P. Cho, “The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2,” Fuel, vol. 80, no. 13, pp. 1953–1962, 2001.
【13】 L. Johnston, E. Hausman, B. Biewald, R. Wilson, “2011 Carbon Dioxide Price Forecast,” vol. 2011, 2011.
【14】 A. Abad, J. Adánez, F. García-Labiano, L. F. deDiego, P. Gayán, J. Celaya, “Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion,” Chem. Eng. Sci., vol. 62, no. 1–2, pp. 533–549, 2007.
【15】 B. Kronberger, G. Löffler, H. Hofbauer, “Simulation of mass and energy balances of a chemical-looping combustion system,” Clean Air, vol. 6, no. 1, pp. 1–14, 2005.
【16】 J. A. Wünning, J. G.Wünning, “Flameless oxidation to reduce thermal no-formation,” Prog. Energy Combust. Sci., vol. 23, no. 1, pp. 81–94, 1997.
【17】 M. Ishida, H. Jin, “A novel chemical-looping combustor without NOx formation,” Ind. Eng. Chem. Res., vol. 35, no. 7, pp. 2469–2472, 1996.
【18】 University of Cambridge, “DoITPoMS - TLP Library Ellingham Diagrams - The interactive Ellingham diagram,” 2020.
【19】 “U.S. Environmental Protection Agency, Inventory of U.S. greenhouse gas emissions and sinks, 1990-2014.
【20】 M. R. Quddus, “A Novel Mixed Metallic Oxygen Carrier for Chemical Looping Combustion: Preparation, Characterization & Kinetic Modeling,” 2013.
【21】 HKEX, “London Metal Exchange: Home,” London Metal Exchange, 2019.
【22】 “錳價格_錳礦價格_今日錳價格行情走勢圖.”
【23】 B. E. Sawe, “The Most Abundant Elements In The Earth’s Crust - WorldAtlas.com,” 2018.
【24】 J. Adánez, L. F. DeDiego, F. García-Labiano, P. Gayán, A. Abad, J. M. Palacios, “Selection of oxygen carriers for chemical-looping combustion,” Energy and Fuels, vol. 18, no. 2, pp. 371–377, 2004.
【25】 K. S. Kang, C. H. Kim, K. K. Bae, W. C. Cho, S. H. Kim, C. S. Park, “Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production,” Int. J. Hydrogen Energy, vol. 35, no. 22, pp. 12246–12254, 2010.
【26】 L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier,” Energy and Fuels, vol. 23, no. 5, pp. 2498–2505, 2009.
【27】 T. Song, L. H. Shen, J. Xiao, Z. P. Gao, H. M. Gu, S. W. Zhang, “Characterization of hematite oxygen carrier in chemical-looping combustion at high reduction temperature,” Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol., vol. 39, no. 8, pp. 567–574, 2011.
【28】 P. C. Chiu, Y.Ku, Y. L. Wu, H. C. Wu, Y. L. Kuo, Y. H. Tseng, “Characterization and evaluation of prepared Fe2O3/Al2O3 oxygen carriers for chemical looping process,” Aerosol Air Qual. Res., vol. 14, no. 3, pp. 981–990, 2014.
【29】 E. R. Stobbe, B. A. DeBoer, J. W. Geus, “The reduction and oxidation behaviour of manganese oxides,” Catal. Today, vol. 47, no. 1–4, pp. 161–167, 1999.
【30】 Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion,” Chem. Eng. Sci., vol. 62, no. 23, pp. 6556–6567, 2007.
【31】 A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, “Chemical - Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers - Oxygen release and reactivity with methane,” Fuel, vol. 90, no. 3, pp. 941–950, 2011.
【32】 T. Mattisson, A. Järdnäs, A. Lyngfelt, “Reactivity of some metal oxides supported on alumina with alternating methane and oxygen - Application for chemical-looping combustion,” Energy and Fuels, vol. 17, no. 3, pp. 643–651, 2003.
【33】 L. F. DeDiego “,Development of Cu-based oxygen carriers for chemical-looping combustion,” Fuel, vol. 83, no. 13, pp. 1749–1757, 2004.
【34】 J. Bolhàr-Nordenkampf, T. Pröll, P. Kolbitsch, H. Hofbauer, “Performance of a NiO-based oxygen carrier for chemical looping combustion and reforming in a 120 kW unit,” in Energy Procedia, 2009.
【35】 J. Adánez, C. Dueso, L. F. D. Diego, F. García-Labiano, P. Gayán, A. Abad, “Methane combustion in a 500 Wth chemical-looping combustion system using an impregnated ni-based oxygen carrier,” Energy and Fuels, vol. 23, no. 1, pp. 130–142, 2009.
【36】 A. Lyngfelt, A. Brink, Ø. Langørgen, T. Mattisson, M. Rydén, C. Linderholm, “11,000 h of chemical-looping combustion operation—Where are we and where do we want to go?,” International Journal of Greenhouse Gas Control, vol. 88. Elsevier Ltd, pp. 38–56, 2019.
【37】 J. Adánez, F. García-Labiano, L. F. DeDiego, P. Gayán, J. Celaya, A. Abad, “Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion,” in Industrial and Engineering Chemistry Research, 2006.
【38】 J. Adánez, C. Dueso, L. F. D. Diego, F. García-Labiano, P. Gayán, A. Abad, “Methane combustion in a 500 Wth chemical-looping combustion system using an impregnated ni-based oxygen carrier,” Energy and Fuels, vol. 23, no. 1, pp. 130–142, 2009.
【39】 L. Wzation, “IARC - INTERNATIONAL AGENCY FOR RESEARCH ON CANCER.”
【40】 W. C. Huang, Y. L. Kuo, Y. M. Su, Y. H. Tseng, H. Y. Lee, Y. Ku, “A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process,” Chem. Eng. J., vol. 316, pp. 15–23, 2017.
【41】 ACGIH, “ACGIH - Association Advancing Occupational and Environmental Health,” 1989.
【42】 M. Arjmand, H. Leion, A. Lyngfelt, T. Mattisson, “Use of manganese ore in chemical-looping combustion (CLC)-Effect on steam gasification,” Int. J. Greenh. Gas Control, vol. 8, pp. 56–60, 2012.
【43】 G. Azimi, T. Mattisson, H. Leion, M. Rydén, A. Lyngfelt, “Comprehensive study of Mn-Fe-Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU),” Int. J. Greenh. Gas Control, vol. 34, pp. 12–24, 2015.
【44】 G. Azimi, H. Leion, M. Rydén, T. Mattisson, A. Lyngfelt, “Investigation of different Mn-Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU),” Energy and Fuels, vol. 27, no. 1, pp. 367–377, 2013.
【45】 P. Cho, T. Mattisson, A. Lyngfelt, “Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion,” Fuel, vol. 83, no. 9, pp. 1215–1225, 2004.
【46】 F. Li, Z. Sun, S. Luo, L. S. Fan, “Ionic diffusion in the oxidation of iron - Effect of support and its implications to chemical looping applications,” Energy Environ. Sci., vol. 4, no. 3, pp. 876–880, 2011.
【47】 T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal,” Int. J. Greenh. Gas Control, vol. 11, pp. 326–336, 2012.
【48】 M. M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, “On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC),” Chem. Eng. Res. Des., vol. 88, no. 11, pp. 1505–1514, 2010.
【49】 P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kw continuous looping operation,” Ind. Eng. Chem. Res., vol. 48, no. 11, pp. 5542–5547, 2009.
【50】 S. Sundqvist, N. Khalilian, H. Leion, T. Mattisson, A. Lyngfelt, “Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU),” J. Environ. Chem. Eng., vol. 5, no. 3, pp. 2552–2563, 2017.
【51】 P. Mungse, G. Saravanan, S. Rayalu, N. Labhsetwar, “Mixed Oxides of Iron and Manganese as Potential Low-Cost Oxygen Carriers for Chemical Looping Combustion,” Energy Technol., vol. 3, no. 8, pp. 856–865, 2015.
【52】 D. R. Toxfaqs, “ATSDR ToxFAQs: 2-Butanone,” Atsdr, no. September, pp. 2–3, 1995.
【53】 W. B. Guenther, “The Thermal Decomposition of Methyl n-Propyl Ketone,” J. Am. Chem. Soc., vol. 80, no. 5, pp. 1071–1073, 1958.
【54】 “Nitric oxide formation at high temperature (Journal Article) | OSTI.GOV.”
【55】 H. Spliethoff, “Power generation from solid fuels,” Power Syst., vol. 210, 2010.
【56】 J. Żelkowski, Kohlecharakterisierung und Kohleverbrennung : Kohle als Brennstoff, Physik und Theorie der Kohleverbrennung, Technik, 2004.
【57】 J. Pohl, S. Chen, M. Heap, D. P. Volume, “Correlation of NO emissions with basic physical and chemical characteristics of coal; joint symposium on stationary combustion NO „control.” , 1982
【58】 W. Schulz, “Experimentelle Untersuchung der Bildung von Stickoxiden bei der Kohlestaubverbrennung,” 1985.
【59】 A. A. Konnov, G. Colson, J. DeRuyck, “NO formation rates for hydrogen combustion in stirred reactors,” Fuel, vol. 80, no. 1, pp. 49–65, 2001.
【60】 C. P. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” Symp. Combust., vol. 13, no. 1, pp. 373–380, 1971.
【61】 J. W. Brennstoff-Wärme-Kraft, “Elementarreaktionen in Verbrennung sprozessen,” pascal-francis.inist.fr, 1985.
【62】 L. L. Sloss, Nitrogen oxides control technology fact book. Noyes Data Corp, 1992.
【63】 H. C. Wu, Y. Ku, H. H. Tsai, Y. L. Kuo, Y. H. Tseng, “Rice husk as solid fuel for chemical looping combustion in an annular dual-tube moving bed reactor,” Chem. Eng. J., vol. 280, pp. 82–89, 2015.
【64】 A. Tong, S. Bayham, M.V. Kathe, L. Zeng, S. Luo, L. S. Fan, “Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University,” Appl. Energy, vol. 113, pp. 1836–1845, 2014.
【65】 L. Fan, F. Li, S. Ramkumar, “Utilization of chemical looping strategy in coal gasification processes,” Particuology, vol. 6, no. 3, pp. 131–142, 2008.
【66】 F. Li, L. Zeng, L. G. Velazquez-Vargas, Z. Yoscovits, L. S. Fan, “Syngas chemical looping gasification process: Bench-scale studies and reactor simulations,” AIChE J., vol. 56, no. 8, pp. 2186–2199, 2010.
【67】 陳資文, “回收乾電池氧化錳用於化學迴路燃燒程序鐵錳複合載氧體之可行性評估,” 國立台灣科技大學,2019。
【68】 徐凡, “錳礦運用於化學迴路燃燒程序之可行性評估,” 國立台灣科技大學, 2018。
【69】 C. A. Johnson , “A Generalized Method for Predicting the Minimum Fluidization Velocity,” 1953.
【70】 U. Narkiewicz, I.Pełech, andU.Narkiewicz, “The Kinetics of Ethylene Decomposition on Iron Catalyst,” vol. 116, 2014.
【71】 氮氧化物性質與生成機制氮氧化物控制方法與技術, “大綱鍋爐空氣污染物排放標準.”
【72】 傅俊霖, “鐵礦運用於化學迴路之脫硝性能評估,” 國立台灣科技大學,2019。

無法下載圖示 全文公開日期 2025/08/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE