簡易檢索 / 詳目顯示

研究生: 曾建凱
Jian-Kai Zeng
論文名稱: 不鏽鋼薄板之微流道撓性成形之可行性研究
Feasibility Study on Thin Stainless Steel Sheet for Micro-channel under Flexible Forming Process
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-Hai Hsiang
陳聰嘉
Tsung-Chia Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 不鏽鋼微流道撓性成形
外文關鍵詞: stainless steel, micro-channel, flexible forming process
相關次數: 點閱:175下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

撓性成形製程有下列優點:只需要製造一個金屬模具,更換模具即可改變製品形狀,撓性介質與金屬模具不需要精密的對位,高的表面品質。因此,對於成形製程而言可以大大地減少所需的加工時間與成本。
本文主要探討AISI 304不鏽鋼薄板微流道的撓性成形製程之可行性。對於單流道的製造目前有不同兩種加工方式,分別是凹模與凸模,藉由實驗的方法針對兩種類型的變形特性進行分析。使用兩種不同流道形狀之設計,包括了四直槽型與交叉型,進行成形實驗,比較微流道各個流道的成形深度狀況。使用不同硬度的撓性介質進行實驗,研究其微成形製程狀況。
本研究發現撓性成形製程之凸模成形方式比凹模成形方式更容易成形,且成形後四直槽型與交叉型之各個流道的深度分佈並不相同。不論以凹模、凸模或金屬沖頭與金屬母模的方式成形,微流道的成形厚度之分佈皆不均勻,微流道成形的側壁都會有變薄現象。同材質不同硬度的TPU撓性介質其硬度愈小則成形負荷愈大。期盼此研究之成果,能作為日後在撓性成形之研究參考。


The flexible forming process has the following advantages: only one rigid die must be manufactured, the product shape can be changed easily by changing the die, flexible medium and rigid die do not need to be assembled precisely, and high surface quality. Therefore, the time and cost required for forming process can be greatly reduced.
This study investigated the feasibility of AISI 304 thin stainless steel sheet for micro-channel under flexible forming process. For the fabrication of a single channel, there were two different deformation styles: concave and convex. The deformation characteristics of the two deformation styles were analyzed with experimental method. Two different flow channel designs including both four parallel flow channel and interdigitated flow channel were presented in this study to compare the depth of forming of the micro-channel. The flexible mediums of different hardness were used in the experiment to study the micro-forming process.
It can be found that the convex deformation style has better formability in flexible forming process. Both Four parallel flow channel and interdigitated flow channel have different depth in each channel after forming. The thickness distribution of the formed micro-channel is uneven, and the most dangerous position occurs at the side of the micro-channel. The punch load increases with decreasing hardness in TPU(flexible medium). This will serve as reference for further research on flexible forming process.

摘要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1 微成形 2 1.2.2撓性成形製程 7 1.3研究動機與目的 11 1.4論文架構 12 第二章 撓性成形技術介紹與應用 13 2.1薄板成形 13 2.2撓性成形技術介紹 13 2.3撓性成形應用於雙極板 16 第三章 實驗方法 18 3.1實驗設備規格 18 3.2材料基本特性 19 3.3 模具設計 21 3.3.1簡易撓性模具設計 21 3.3.2金屬沖頭與模具 27 3.3.3撓性成形之軟沖頭與模具 30 3.4 不同流道形狀之工具頭 33 3.5刀模設計 36 3.6撓性介質 39 3.7撓性成形實驗步驟 41 3.8量測設備 41 第四章 實驗結果與討論 44 4.1金屬沖頭與撓性成形對位狀況之比較 44 4.2不同的撓性介質沖頭之成形深度比較 48 4.3不同流道形狀之成形深度比較 53 4.4 成形厚度之比較 54 4.5成形負荷之比較 55 4.6 翹曲現象 59 第五章 結論與建議 61 5.1結論 61 5.2未來研究之展望與建議 62 參考文獻 64 作者簡介 66

1.U. Engel and R. Eckstein, “Microforming - from basic research to its realization”, Journal of Materials Processing Technology, Vol. 125-126, pp. 35-44.(2002).
2.M. Gerier, F. Vollertsen and R. Kals, “Fundamentals on manufacturing of sheet metal microparts”, Annals of the CIRP, Vol.45, No.1, pp.277-282. (1996).
3.M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler and U. Engel, “Microforming”, CIRP Annals - Manufacturing Technology, Vol. 50,No. 2,pp.445-462 (2001).
4.T. A. Kals and R. Eckstein, “Miniaturization in Sheet Metal Working,” Journal of Materials Processing Technology, Vol.103, pp.95-101, (2000).
5.F. Vollertsen, H. S. Niehoff and Z. Hu, “State of art in micro forming”, International Journal of Machine Tools and Manufacture, Vol. 46, No. 11, pp.1172-1179 (2006).
6.林英傑,金屬中心精微模具及成形技術研發現況,機械月刊,第三十六卷,第八期,2010。
7.J. D. Browne and E. Battikha, “Optimisation of aluminium sheet forming using a flexible die”, Journal of Materials Processing Technology , Vol. 55,No. 3-4 pp.218-223 (1995).
8.M. Ramezani, Z. R. Mohd and R. Ahmad, “Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation”, CIRP Journal of Manufacturing Science and Technology, Vol. 3, No. 3 , pp.16-203 (2010).
9.Y. Liu, L. Hua, J. Lan and X. Wei, “Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates”, Journal of Power Sources, Vol.195, No. 24, pp.8177-8184 (2010).
10.Y. Liu and L. Hua, “Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming”, Journal of Power Sources, Vol. 195, No. 11, pp.3529-3535 (2010).
11.L. Peng, P. Hu, X. Lai, D. Mei and J. Ni, “Fabrication of metallic bipolar plates for proton exchange membrane fuel cell by flexible forming process - numerical simulations and experiments”, Journal of Fuel Cell Science and Technology, Vol. 7, No. 3, pp.031009-1-031009-9 (2010).
12.許源泉,塑性加工學,全華科技圖書股份有限公司,雲林,2005。
13.G. E. Dieter, Mechanical metallurgy, McGraw-Hill Book Company, pp. 651-655 (1988).
14.黃鎮江,燃料電池,全華科技圖書股份有限公司,台北,2005。
15.http://www.bac2.co.uk/images/FuelCellConstruction.jpg, Last access date (2010).
16.邱先拿,沖壓模具設計手冊,金屬工業研究發展中心,2000。
17.ASTM D2240-05, “Standard test method for rubber property - durometer hardness”, Annual Book of ASTM Standard, Vol.9.1, West Conshohocken, PA (2010).

QR CODE