簡易檢索 / 詳目顯示

研究生: 李昱頡
Yu-Jie Li
論文名稱: 單相電壓源換流器之並聯控制策略
Parallel Control Strategy for Single-phase Voltage-source Inverters
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
郭明哲
Ming-Tse Kuo
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 97
中文關鍵詞: 並聯控制單相全橋式換流器市電併聯
外文關鍵詞: parallel control, single-phase full-bridge inverter, grid-connected mode
相關次數: 點閱:419下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製單相全橋式換流器並聯控制系統,負載為線性或非線性。文中提出二組換流器:第一組換流器採用電壓閉迴路控制,提供交流電壓至等效負載;第二組換流器則以電流閉迴路控制策略,提供負載所需之功率,以提高系統之功率容量。
    本文以32位元數位信號處理器(DSP, TMS320F28069)為系統之控制核心,且回授電壓及電流,以軟體完成閉迴路控制,故可減少電路元件,提高系統可靠度。本系統以Matlab/Simulink模擬軟體進行分析,俾與實測結果相互比較。
    輸出功率需求為1kW時,第一組換流器為電壓控制型,負載電壓及電流之實測結果分別為156V與13A;第二組換流器為電流控制型,電流峰值命令為6.5A時,第一組換流器輸出電流的峰值為6.5A、總諧波失真率為4.33%,此時第二組換流器之輸出電流的峰值及總諧波失真率分別為6.5A與4.2%,實測結果顯示輸出端等效負載的功率由二組換流器平均提供。模擬與分析結果印證了本文單相電壓源換流器並聯控制策略之可行性。


    This thesis aims to develop parallel control strategy of two single-phase full-bridge inverters for linear or non-linear load. The first inverter operates in voltage closed-loop control, while the second inverter operates in current closed-loop control and thereby enhancing output power capacity.
    In this thesis, the 32-bit digital signal processor, “TMS320F28069”, is used as the core of the controller for voltage as well as current closed-loop controls to reduce circuit components and enhance system reliability. In addition, Matlab/Simulink simulation is given to facilitate comparison with experimental results.
    The experimental results indicate that, under 1kW resistive load, the output voltage and current of the first inverter operated in voltage closed-loop control are 156V and 13A, respectively. When the second inverter is operated in current closed-loop control with the peak current command of 6.5A, the output peak current and total harmonic distortion of the first inverter are 6.5A and 4.33%, respectively, while the corresponding values of the second inverter are 6.5A and 4.2%. This indicates that both inverters share the required output power equally. In short, the simulation and experimental results verify the feasibility of the proposed control strategy for parallel operation of single-phase voltage-source inverters.

    摘要 I Abstract II 謝誌 III 目錄 IV 符號索引 VI 圖表索引 X 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 1 1.3 本文架構與特色 3 1.4 本文大綱 6 第二章 單相全橋式換流器分析與控制 7 2.1 前言 7 2.2 單相全橋式換流器之數學模式 7 2.3 單相全橋式換流器的脈波寬度調變控制 9 2.3.1 單極性電壓脈波寬度調變控制 10 2.3.2 減少開關切換的脈波寬度調變控制 12 2.3.3 雙極性電壓脈波寬度調變控制 13 2.4 單相全橋式換流器電壓開迴路控制的模擬 14 2.5 單相全橋式換流器電壓開迴路控制的實測 20 2.6 結語 22 第三章 單相全橋式換流器並聯控制策略 23 3.1 前言 23 3.2 市電側相位角的偵測 23 3.3 單相市電併聯模式之電流閉迴路控制策略 26 3.4 單相獨立供電模式之電壓閉迴路控制策略 27 3.5 單相全橋式換流器之並聯控制 28 3.6 單相全橋式換流器電壓及電流閉迴路控制的模擬 30 3.6.1 單相獨立供電模式之電壓閉迴路控制策略模擬 30 3.6.2 單相市電併聯模式之電流閉迴路控制策略模擬 38 3.6.3 單相全橋式換流器之並聯控制模擬 41 3.7 結語 43 第四章 實體製作與實測 44 4.1 前言 44 4.2 硬體電路架構 44 4.3 軟體規劃 48 4.3.1 主程式流程規劃 48 4.3.2 獨立供電模式之電壓閉迴路控制程式規劃 50 4.3.3 市電側相位角偵測程式規劃 51 4.3.4 市電併聯模式之電流閉迴路控制程式規劃 52 4.4 實測結果 54 4.4.1 單相獨立供電模式之電壓閉迴路控制策略實測 54 4.4.2 單相市電併聯模式之電流閉迴路控制策略實測 62 4.4.3 單相全橋式換流器之並聯控制實測 66 4.5 結語 68 第五章 結論與建議 70 5.1 結論 70 5.2 建議 71 參考文獻 72 附錄A 計算機模擬程式 76

    [1] F. Liu, X. Zha, Y. Zhou and S. Duan, “Design and Research on Parameter of LCL Filter in Three-Phase Grid-Connected Inverter”, 2009 IEEE 6th International Power Electronics and Motion Control Conference (IPEMC), pp. 2174-2177, 2009.
    [2] J. Lettl, J. Bauer and L. Linhart, “Comparison of Different Filter Tpyes for Grid Connected Inverter”, Progress In Electromagnetics Research Symposium (PIERS) Proceedings, pp. 1426-1429, March 20-23, 2011.
    [3] D. Shin, H. J. Kim, J. P. Lee, T. J. Kim and D. W. Yoo, “Design of LCL Filter for Improving Robustness of Grid-Connected Voltage Source Inverter”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2940-2946, 2014.
    [4] W. Yin and Y. Ma, “Research on Three-phase PV Grid-connected Inverter Based on LCL Filter”, 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), pp. 1279-1283, 2013.
    [5] R. Juntunen, J. Korhonen, T. Musikka, L. Smirnova, O. Pyrhönen and P. Silventoinen, “Identification of Resonances in Parallel Connected Grid Inverters with LC- and LCL-filters”, 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2122-2127, 2015.
    [6] T. Yu, S. Choi and H. Kim, “Indirect Current Control Algorithm for Utility Interactive Inverters for Seamless Transfer”, 2006 IEEE 37th Power Electronics Specialists Conference (PESC), pp. 1-6, June 2006.
    [7] G. E. M. Ruiz, N. Muñoz and J. B. Cano, “Modeling, Analysis and Design Procedure of LCL Filter for Grid Connected Converters”, 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-6, 2015.
    [8] 黃世中,“市電並聯電力轉換系統之數位控制器的研製”,國立雲林科技大學電機研究所論文,民國九十年。

    [9] T. F. Wu, C. L. Kuo, K. H. Sun and H. C. Hsieh, “Combined Unipolar and Bipolar PWM for Current Distortion Improvement During Power Compensation”, IEEE Transactions on Power Electronics, vol. 29, pp.1702-1709, 2014.
    [10] 王國丞,“並聯三相不斷電系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十五年。
    [11] S. A. O. da Silva, R. Novochadlo and R. A. Modesto, “Single-phase PLL Structure Using Modified p-q Theory for Utility Connected Systems”, 2008 IEEE Power Electronics Specialists Conference, pp. 4706-4711, 2008.
    [12] S. K. Chung, “Phase-locked loop for grid-connected three-phase power conversion systems”, IEEE Proceedings Electronic Power Applications, vol. 147, pp. 213-219, 2000.
    [13] S. A. O. da Silva, E. Tomizaki, R. Novochadlo, E. Antonio and A. Coelho, “PLL Structures for Utility Connected Systems under Distorted Utility Conditions”, IEEE Industrial Electronics Conference, pp. 2636-2641, 2006.
    [14] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “A New Single-Phase PLL Structure Based on Second Order Generalized Integrator”, 2006 IEEE 37th Power Electronics Specialists Conference (PESC), pp. 1-6, 2006.
    [15] U. A. Miranda, M. Aredes and L. G. B. Rolim, “A DQ Synchronous Reference Frame Control for Single-Phase Converters”, IEEE Power Electronics Specialists Conference, pp. 1377-1381, 2005.
    [16] B. Saritha and P. A. Jankiraman, “Observer based current control of single-phase inverter in DQ rotating frame”, 2006 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-5, 2006.
    [17] 張晉銘,“單相換流器市電併網控制系統之研製”,國立台灣科技大學電機研究所碩士論文,民國九十八年。
    [18] 鍾秉學,“單相及三相市電併聯之功率轉換器研製”,國立台灣科技大學電機研究所碩士論文,民國一百年。

    [19] 楊景堯,“單相市電併網之蓄電池儲能系統研製”,國立台灣科技大學電機研究所碩士論文,民國一百零二年。
    [20] M. M. Sergio, G. L. Emilio, M. G. Angel, J. A. Fuentes, V. R. Antonio and S. A. Plata, “A New Three-Phase DPLL Frequency Estimator Based on Nonlinear Weighted Mean for Power System Disturbances”, IEEE Transactions on Power Delivery, vol. 28, pp. 179-187, 2013.
    [21] R. A. Modesto, R. Barriviera, S. A. O. da Silva and A. A. Oliveira Jr., “A simplified strategy used to control the output voltage and the input current of a single-phase line-interactive UPS system”, 2013 IEEE Brazilian Power Electronics Conference, pp. 420-426, 2013.
    [22] J. R. Kan, N. Li, Z. L. Yao, Y. C. Xue and D. C. Wu, “Droop PLL for Grid-Connected Inverter”, 2012 IEEE 7th International Power Electronics and Motion Control Conference (IPEMC), vol. 3, pp. 2183-2186, 2012.
    [23] 廖日能,“並聯型三臂式直流-直流功率轉換器之研製”,國立台灣科技大學電機研究所碩士論文,民國九十八年。
    [24] 鄭榮明,“多功能單相不斷電系統之研製”,國立台灣科技大學電機研究所碩士論文,民國九十七年。
    [25] A. Kadavelugu, S. Bhattacharya, S. H. Ryu, D. Grider, S. Leslie and K. Hatua, “Understanding dv/dt of 15 kV SiC N-IGBT and its Control Using Active Gate Driver”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2213-2220, 2014.
    [26] L. L. Chen, L. Xiao and Y. G. Yan, “A Novel Parallel Inverter System Based on Coupled Inductors”, The 25th International Telecommunications Energy Conference (INTELEC), pp. 46-50, 2003.
    [27] L. L. Chen, L. Xiao, W. Hu, and Y. G. Yan, “Application of Coupled Inductors in Parallel Inverter System”, 2003 IEEE 6th International Conference on Electrical Machines and Systems (ICEMS), vol. 1, pp. 398-401, November 2003.
    [28] D. Sha, Z. Q. Guo and X. Z. Liao, “Control Strategy for Input-Parallel-Output-Parallel Connected High-Frequency Isolated Inverter Modules”, IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2237-2248, August 2011.
    [29] Q. H. Xiao, J. Liu and Y. L. Li, “A Novel Controller for Parallel Operation of Inverters based on Active Disturbance Rejection Control Technique”, 2013 3rd International Conference on Intelligent System Design and Engineering Applications (ISDEA), pp. 140-143, 2013.
    [30] M. Z. Gao, C. H. Zhang, M. H. Qiu, W. H. Li, M. Chen and Z. M. Qian, “An Accurate Power-sharing Control Method based on Circulating-current Power Model for Voltage-source-inverter Parallel System”, 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1815-1821, 2015.
    [31] M. Amirabadi, J. Baek and H. A. Toliyat, “Bi-directional Sparse Parallel Partial Resonant ac-Link Inverter”, 2013 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 136-143, 2013.
    [32] IEEE, “IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balances, or Unbalanced Conditions”, IEEE Std 1459-2010, pp.1-52, March 2010.
    [33] J. F. Chen, J. N. Lin and T. H. Ai, “The Techniques of the Serial and Paralleled IGBTs”, Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 999-1004, 1996.

    QR CODE