簡易檢索 / 詳目顯示

研究生: 林佑杰
Tu-Chieh Lin
論文名稱: 諧波齒輪之輸出傳遞誤差及背隙誤差分析研究
TRANSMISSION ERRORS AND BACKLASH ANALYSYS OF A HARMONIC GEAR DRIVE
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 李維楨
Wei-chen Lee
徐瑞宏
Ruei-Hung Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 諧波齒輪接觸率傳動誤差分析背隙分析
外文關鍵詞: Harmonic gear, contact rate, transmission error analysis, backlash analysis
相關次數: 點閱:174下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 諧波齒輪由於只有鋼輪、柔輪與波產生器3種基本零件所組成,易於小型化及輕量化,且是一個具有高減速比的齒輪,由於傳動中鋼輪與柔輪的嚙合齒數很高,因此能產生更強的轉矩並進行非常準的定位。本論文藉由嚙合理論針對漸開線齒形、S齒形與CTC齒形建立柔輪與剛輪齒形的數學模式。在精密傳動的齒輪中,背隙與傳遞誤差是非常重要的指標,但這兩性能分析都是製造出來後才進行測試分析,因此本論文建立一套計算背隙與傳遞誤差的方式,讓我們在設計階段即可先行設計。最後本論文會針對三種齒形做接觸率的分析,來得到諧波齒輪的最佳齒形。


    Harmonic gears are composed of only three basic parts: circular spline, flex spline and wave generator. It is easy to be miniaturized and lightweight, and it is a gear with high reduction ratio. The number of contact point between the circular spline and the flex spline is very high. So it can get higher torque and positioning accuracy. In this paper, we establish mathematical mode of the flex spline and the circular spline with the involute tooth profile, S tooth profile and CTC tooth profile were developed by using respective rack cutter based on the theory of gearing. Backlash and transmission error are more important points in precision gear, but backlash analyses and transmission error analyses are performed after the experiment is performed. Therefore, this paper establishes a way to calculate backlash and transmission error analysis, so that we can design in the design stage. Finally, we will analyze the contact rate of the three tooth profiles to get the best tooth profile of the harmonic gear.

    指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目 錄 VI 符號索引 VIII 圖索引 XI 表索引 XIV 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 2 1.4 論文架構 6 第2章 諧波齒輪柔輪齒形數學模式 7 2.1 前言 7 2.2 齒條刀具數學模式 7 2.2.1 漸開線齒形刀具數學模式 7 2.2.2 S齒形刀具數學模式 8 2.2.3 CTC齒形刀具數學模式 10 2.3 柔輪齒形數學模式 12 2.4 數值範例 14 2.5 小結 17 第3章 諧波齒輪剛輪齒形數學模式 18 3.1 前言 18 3.2 剛輪齒形數學模式 18 3.2.1 中性線數學模式 18 3.2.2 齒形數學模式 20 3.3 電腦程式計算剛輪齒形 23 3.3.1 利用數值積分求得 值 23 3.3.2 利用黃金搜尋法求得 的最小值 23 3.3.3 利用曲線擬合建置剛輪齒形輪廓 26 3.4 數值範例 27 3.5 小結 32 第4章 背隙與傳遞誤差分析 33 4.1 前言 33 4.2 齒形修形與製造誤差 33 4.2.1 修形 33 4.2.2 齒隙 34 4.2.3 節距誤差 34 4.3 接觸點計算 35 4.4 背隙與傳遞誤差分析 38 4.5 小結 40 第5章 背隙與傳遞誤差數值範例 41 5.1 前言 41 5.2 背隙、傳遞誤差分析與接觸率比較 41 5.2.1 漸開線齒形分析比較 42 5.2.2 S齒形分析比較 42 5.2.3 CTC齒形分析比較 48 5.3 小結 51 第6章 結論與討論 52 6.1 結果與討論 52 6.2 建議與未來展望 52 參考文獻 54 附錄A、S齒形接觸點座標 57 附錄B、CTC齒形接觸點座標 59

    [1] Harmonic Drive LLC., (2015). Harmonic Drive精密控制用減速機綜合型錄 available at: https://drive.google.com/open?id=1ABRrV9Nl575HQqUTwSH9-ihbIxRmMx2F.
    [2] Musser, C. W. (1959). Strain Wave Gearing. U.S. Patent, No.2906143.
    [3] Musser, C. W. (1960). Breakthrough in mechanical drive design: The Harmonic Drive Machine Design, pp.160-173.
    [4] Lapp, R. H. (1965). Harmonic Dive, U.S. Patent, No.3214999.
    [5] Kondo, K., & Takada, J. (1987). STUDY ON WAVE GEAR DRIVES (KINEMATICS AND GEOMETRY OF TOOTH ENGAGEMENT). JSME International Journal, 30(263), 854-860. doi:10.1299/jsme1987.30.854.
    [6] Kondo, K., & Takada, J. (1990). Study on tooth profiles of the harmonic drive. Journal of Mechanical Design, Transactions of the ASME, 112(1 , Mar., 1990), 131-137. doi:10.1115/1.2912570.
    [7] Kondo, K. (1996). Study on wave gear drives (2nd report, design of involute tooth profiles). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 62(603), 4363-4368. doi:10.1299/kikaic.62.4363.
    [8] Ishikawa, S. (1989). Tooth Profile of Spline of Strain Wave Gearing, U.S. Patent, No.4823638.
    [9] Ishikawa, S., and Kiyosawa, Y. (1995). Flexing Contact Type Gear Drive of Non-Profile-Shifted Two-Circular-Arc Composite Tooth Profile, U.S. Patent, No.5458023.
    [10] 辛洪兵(2010)。雙圓弧諧波齒輪滾齒刀。專利編號CN101134256B。中華人民共和國專利。
    [11] Kiyosawa, Y., Zhang, X. Y., Asawa, H., Kato, M., & Inoue, K. (1998). On The Reduction of Tosional Vibration of Strain Wave Gearing (1st Report, High Precision Measurement of Rotational Transmission Error). Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 64(625), 3596-3602. doi:10.1299/kikaic.64.3596.
    [12] Yamamoto, M., Iwasaki, M., Okitsu, Y., Sasaki, K., & Yajima, T. (2010). Modeling and compensation for angular transmission error in harmonic drive gearings (1st report) -Precise modeling considering nonlinear components. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 76(10), 1206-1211. doi:10.2493/jjspe.76.1206.
    [13] Yanabe, S., Ito, A., Okamoto, A., Yamaguchi, T., Ikeda, M., & Fujita, H. (1990). Rotational Transmission Error of Harmonic Drive Device. Transactions of the Japan Society of Mechanical Engineers Series C, 56(521), 148-153. doi:10.1299/kikaic.56.148.
    [14] Fehlmann, A., Giebink, C., Kuhn, J. R., Messersmith, E. J., Mickey, D. L., Scholl, I. F., . . . Schickling, R. (2016). Cryogenic near infrared spectropolarimeter for the Daniel K. Inouye Solar Telescope. Paper presented at the Ground-Based and Airborne Instrumentation for Astronomy VI.
    [15] Yang, J., Sun, C., Ohishi, M., & Inatani, J. (2002). Control system of the portable submillimeter telescope (POST). Proceedings of SPIE - The International Society for Optical Engineering, 4848, 359-367. doi:10.1117/12.460923.
    [16] Ye, W., Li, Z., & Su, C. Y. (2012). Development and human-like control of an upper limb rehabilitation exoskeleton using sEMG bio-feedback. Paper presented at the 2012 9th IEEE International Conference on Mechatronics and Automation, ICMA 2012, Chengdu.
    [17] Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H. O., & Takanishi, A. (2006). Development of a new humanoid robot WABIAN-2. Paper presented at the Proceedings - IEEE International Conference on Robotics and Automation.
    [18] Ahn, H. J., Lee, K. H., & Lee, C. H. (2017). Design optimization of a knee joint for an active transfemoral prosthesis for weight reduction. Journal of Mechanical Science and Technology, 31(12), 5905-5913. doi:10.1007/s12206-017-1134-9.
    [19] Litvin, F. L., and Fuentes A. (2004). Gear Geometry and Applied Theory. 2nd Edition, Cambridge, UK: Cambridge University Press.
    [20] Arora, J. S. (2016). Introduction to Optimum Design. 4th Edition. Academic Press.
    [21] Rogers, D. F., and Adams, J. A. (1990). Mathematical Elements for Computer Graphics. 2nd Edition. New York, USA: McGraw-Hill.

    QR CODE