簡易檢索 / 詳目顯示

研究生: 周柏均
Po-Chun Chou
論文名稱: 燃氣爐具之文氏管混流器的性能優化及減噪
Performance Optimization and Noise Reduction for Venturi Mixer Applied on the Gas-Powered Cooking Burner
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
楊旭光
Shiuh-Kuang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 201
中文關鍵詞: 文氏管混流器流/聲場之數值模擬空燃比性能最佳化減噪
外文關鍵詞: Venturi gas mixer, Numerical flow/acoustic simulations, Air-fuel ratio, Optimized performance, Noise reduction
相關次數: 點閱:344下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文設計一款高性能之混流器應用於燃氣爐具,首先考量混流器應用場域及尺寸限制規劃出初始模型,接著根據操作火力需求與燃料種類,於CFD架構探討三種燃氣孔徑(3、4.2及5 mm)與兩種燃料(LPG與NG)的混流器性能;分別審視相關之內部氣體混合、速度分佈與設計缺失研判,並計算其混合氣流量、燃燒功率與空燃比三項性能參數。後續藉數值工具執行完整的幾何參數分析工作,考量參數包括空氣入口孔徑、主管與空氣入口孔徑之間隙、主管的長度及出口管徑,確認各項幾何參數對性能影響,提供混流器之設計參考與性能最佳化。數值計算與參數分析的結果顯示,各燃氣孔徑混流器之最佳化模型較原始模型於各轉速操作點,其空燃比皆接近理想值也符合本研究設計範圍內,這代表最佳化模型能趨近於完全燃燒,有效地減少污染的排放和提高燃氣爐具性能。
在混合氣流量與功率方面,3 mm燃氣孔徑混流器之流量與功率分別降低19%與5%,而較大的燃氣孔徑(4.2與5 mm)混流器之流量分別提高27%與36%,且功率也提高6%與8%;以3 mm燃氣孔徑混流器而言,為了使空燃比保持穩定必須犧牲火力的輸出,而4.2與5 mm燃氣孔徑之混流器能輸出更高火力,同時也大幅減少污染的排放和提高燃氣爐具性能。另外觀察流場及速度分佈可發現,最佳化之混流器皆穩定輸出均勻的混合燃氣供燃燒,且能有效地改善其內部的迴流缺失。至於有關噪音降低之成效,最佳化模型在入、出口處之噪音下降2 dBA以上,而頻譜圖顯示13葉產生之第一特徵頻(975 Hz)的聲壓值提高,但26葉造成之第一與二特徵頻(1,950及3,900 Hz)皆有明顯下降。綜合歸納上述成果,本研究設計之混流器應用於燃氣爐具上,成功地達到強化氣動性能與2 dBA降噪成果,且在特定的特徵頻有3 dB以上之降幅,能明顯看出最佳化後的性能改善成果,可供未來混流器之設計參考。


The goal of this research is to design a high-performance venturi gas mixer for meeting various heating needs of the gas-powered cooking burner, which is used to provide the extra heating output for commercial cooking utilization. Firstly, a venturi mixer prototype is proposed based on the application and geometric limitations. Then, flow fields and performance characteristics of this venturi gas mixer are visualized and assessed via CFD simulation under the high, medium, and low heating demands, which are supplied by fuel pipes with 3, 4.2, and 5mm diameters, respectively. Besides the fuel/mixing and velocity distributions, the performance of venturi gas mixer is analyzed and evaluated by the flowrate of air-gas mixture, the heating power generation, and the air-fuel ratio. Later, a comprehensive parametric analysis is executed on the venturi gas mixer to provide the corresponding influence on key variables, which include air inlet aperture, length and diameter of main tube, venturi exit diameter, and gap between air inlet and main tube.
Accordingly, three optimized gas mixers are constructed to generate different power outputs, and numerically evaluated for using LPG and NG gases as fuels. As expected, CFD calculations show that all proposed models can deliver a superior air-fuel ratio to ensure an efficient combustion for reducing the exhausted emission. Also, gas mixers with 4.2mm and 5mm diameter fuel pipes can deliver extra 28% and 36% flowrates of the air-fuel mixture, which result in 6% and 8% increases on the heating power, respectively. In addition, the flow circulation inside the venturi gas mixer is diminished significantly to prevent the unexpected burning accident. Moreover, the acoustic simulations are performed on these optimized gas burner sets including the venturi gas mixer and the gas blower. The calculated sound pressure levels (SPL) indicate that 2-dB noise reduction is recorded for all monitoring locations at the inlet and the outlet sides of gas-fired burner. In conclusion, this numerical investigation successfully establishes a systematic scheme to optimize the venturi gas mixer generating the extra air/gas mixture flowrate and the higher heating power at a low noise output under various operation points.

摘要 I Abstract III 致謝 V 目錄 VI 圖索引 X 表索引 XV 符號索引 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 預混式燃燒爐具 4 1.2.2 混流器之幾何參數與數值方法 7 1.3 研究動機與流程 10 第二章 燃氣爐具介紹及混流器之設計 14 2.1 燃氣爐具簡介 14 2.2 離心風機之理論介紹 16 2.3 混流器之理論介紹 22 2.4 瓦斯燃氣與空燃比 24 2.4.1 燃氣種類 24 2.4.2 空燃比與反應方程式 25 2.5 混流器之設計 29 第三章 數值方法 32 3.1 統御方程式與紊流模型 33 3.1.1 統御方程式 33 3.1.2 紊流模組 35 3.2 數值求解流程 37 3.2.1 求解流程 37 3.2.2 離散方程式 40 3.2.3 上風分差法 42 3.2.4 速度與壓力之耦合 43 3.3 聲學模式理論 45 第四章 原始混流器之模型建立與模擬分析 49 4.1 混流器之模型建立與介紹 49 4.2 數值模型之網格建立 56 4.3原始混流器之模擬分析 61 4.3.1 邊界條件設定 62 4.3.2 混流器性能之模擬結果與分析 65 4.3.3 速度流場與氣體比例之分析 70 4.4 混流器之設計目標 79 第五章 混流器參數分析與性能改良 82 5.1 空氣入口孔徑之影響 83 5.1.1 性能數據之分析 83 5.1.2 氣體比例與速度分佈 91 5.2 主管入口管徑與空氣入口孔徑之間隙的影響 102 5.2.1 性能數據之分析 103 5.2.2 氣體比例與速度分佈 114 5.3 主管長度之影響 123 5.3.1 性能數據之分析 124 5.3.2 氣體比例與速度分佈 129 5.4 混流器主管出口管徑之影響 140 5.4.1 性能數據之分析 141 5.4.2 速度流場 145 5.5 搭配不同燃料之混流器的性能模擬 152 第六章 風機裝配不同混流器之噪音模擬 164 6.1 混流器之暫態模擬方法 165 6.2 混流器噪音模擬之結果比較 166 第七章 結論與建議 171 7.1 結論 171 7.1.1 混流器之性能設計 171 7.1.2 原始與最佳化模型之性能及聲學特性比較 173 7.2 建議 175 參考文獻 177

[1] “本生燈”。檢自http://en.wikipedia.org/wiki/Bunsen_burner
[2] “瓦斯爐種類”。檢自https://www.liou-tai.net/index.php?route=information/information
[3] “燃氣爐具核心模組” 。檢自https://ebm-papst/condensing-boiler-technology/66514-64034.html
[4] 吳瑞禮,“瓦斯器具之知識” ,日本瓦斯協會,1966年。
[5] Furigas, M. F., “The Gas Supply Control of the Burner of Boiler or
Similar Devices and the Improvement of Adjusting Device,” Pergamon Press, New York, 1966.
[6] Downie, J. M., and Hoggarth, M. L., “A Review of Industrial and
Commercial Gas Burner Developments,” Journal of Fluids Engineering , Vol. 47, No. 391, pp. 124-129, 1974.
[7] Allen, W. G., and Tomas, W. R., “Homogenous Charge Compression
Ignition (HCCI) of Diesel Fuel,” in Society of Automotive Engineers,
Vol. 86, pp. 1927-1935, 1977.
[8] Benninger, N. F., “Requirements and Performance of Engine
Management Systems under Transient Conditions,” in Society of
Automotive Engineers, Vol. 100, pp. 118-127, 1991.
[9] Nakagome, K., Naoki, S., and Niimura, K., “Combustion and EmissionCharacteristics of Premixed Lean Diesel Combustion Engine,” in
Society of Automotive Engineers, Vol. 106, pp. 1528-1536, 1997.
[10] Yoshinori, I., Kenji, K., Takeshi, S., and Yoshinaka, T., “Trial of New Concept Diesel Combustion System-Premixed Compression-Ignited Combustion,” in Society of Automotive Engineers, Vol. 108, No. 3, 1999.
[11] “文氏管混流器”。檢自https://studylib.net/doc/185931/application
[12] “預混裝置”。檢自https://mag.ebmpapst.com/en/industries/heating/ versatile-system consisting-of-a-fan-gas-value-and-venturi-mixer_7747/
[13] Pantangi, V. K., Karuna K., Mishra, S. C., and Sahoo, N., “Performance Analysis of Domestic LPG Cooking Stoves with Porous Media,” International Energy Journal, Vol. 8, pp. 139-144, 2007.
[14] Fu, Y., “Aerodynamics and Combustion of Axial Swirers,” University of Cincinnati, Aerospace Engineering, Doctoral Dissertation, 2008.
[15] Baylar, M. U., and Ozkan, F., “Determination of the Optimal Location ofthe Air Hole in Venturi Aerators,” CLEAN -Soil, Air, Water, pp. 246-249, 2008.
[16] Danardono, D., Kim, K. S., Lee, S. Y., and Lee, J. H., “Optimization the Design of Venturi Gas Mixer for Syngas Engine Using Three-Dimensional CFD Modeling,” Journal of Mechanical Science and Technology, Vol. 25, No. 9, pp. 2285-2296, 2011.
[17] Kariuki, J., Dowlut, A., Yuan, R., Balachandran, R., and Mastorakos, E., “Heat Release Imaging in Turbulent Premixed Methane–Air Flames Close to Blow-Off,” Proceedings of the Combustion Institute, Vol. 35, No. 2, pp. 1443-1450, 2015.
[18] Murugan, P. C., and Joseph, S., “Species-Transport CFD Model for the Gasification of Rice Husk (Oryza Sativa) Using Downdraft Gasifier,” Computers and Eletronics in Agriculture, Vol. 139, pp. 30-40, 2017.
[19] Vaillant, W.N., “Analysis and Application of Full Premixing System
after Variable Frequency Fan,” Combustion and Flame, Vol. 216, pp. 439-452, 2018.
[20] 陳柏祥,“創新式舌部應用於燃氣爐具之離心風機的性能與噪音優化”,國立台灣科技大學機械工程學系碩士論文,2022年。
[21] Eck, I. B., “Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans,” Pergamon Press, New York, 1973.
[22] “文氏管運作原理” 。檢自https://www.physicsforums.com/ threads/ gas burner-venturi-effect.526432/
[23] “文氏管燃燒器”。檢自https://www.combustiontechnology.co.za/training time.htm
[24] “空燃比”。檢自https://en.wikipedia.org/wiki/Air%E2%80%93fuel_
ratio
[25] 蔡伯葦,“探討家用瓦斯爐燃燒器之設計與研究”,私立朝陽科技大學機械工程學系碩士論文,2018。
[26] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
[27] Lighthill, M. J., “On Sound Generation Aerodynamically I. General Theory,” Proceedings of the Royal Society, London, Vol. 211, pp. 564-587, 1952.
[28] Williams, J. E. and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion,” Philosophical Transactions of the Royal Society of London, Vol. 264, pp. 321-342, 1969.
[29] Greifzu, F., “Assessment of Particle-Tracking Models for Dispersed
Particle Laden Flows Implemented in OPENFOAM and ANSYS
FLUENT,” Engineering Applications of Computational Fluid
Mechanics,Vol 10.1, pp. 30-43, 2016
[30] Curle, N., “The Influence of Solid Boundaries upon Aerodynamic
Sound,” Proceedings of the Royal Society of London, Series A,
Mathematical and Physical Sciences, Vol. 231, pp. 505–514, 1955.
[31] Zeller, W., “Concerning Mathematical Treatment of Noise Behavior in
Fans for Air Conditioning Plants,” Energy Conversion and
Management, Vol. 38, pp. 695-708, 1959.

無法下載圖示 全文公開日期 2026/01/17 (校內網路)
全文公開日期 2028/01/17 (校外網路)
全文公開日期 2028/01/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE