簡易檢索 / 詳目顯示

研究生: 彭怡貞
Yi-Jhen Peng
論文名稱: 金屬混合氧化物擔載Pt觸媒製備參數對其氫氣氧化反應的CO耐受性探討
Preparation of mixed oxide supported Pt catalysts for CO tolerance in Hydrogen Oxidation Reaction
指導教授: 林昇佃
Shawn D. Lin
口試委員: 黃炳照
Bing-Joe Hwang
王丞浩
Chen-Hao Wang
林修正
Andrew S. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 165
中文關鍵詞: 金屬混合氧化物雙離子摻雜水熱法氫氣氧化反應
外文關鍵詞: Metal oxide, Dual ion-doping, Hydrothermal process, Hydrogen oxidation reaction
相關次數: 點閱:241下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氫能時代的來臨,將對照驗證質子交換薄膜燃料電池(PEMFC)技術的發展成熟度,目前PEMFC電極觸媒主要是以碳當作載體,利用碳載體的高導電性與高比表面積以使Pt可以均勻分散,但在PEMFC操作條件下會有碳腐蝕現象發生,導致Pt觸媒活性下降,並降低PEMFC的效能。本研究目的為探討非碳載體之金屬混合氧化物陽極反應觸媒,以提升觸媒穩定性,並提升觸媒抗CO毒化能力,以實驗室先前水熱法合成的Ti0.7Ru0.3O2 載體為基礎,進一步測試製備參數對觸媒的影響,所測試的參數包括:載體還原性前處理、雙離子摻雜與Ru添加方式,並比較Ti0.7Ru0.3O2、Zr0.7Ru0.3O2與W0.7Ru0.3O2擔載觸媒之特性。
研究結果顯示以EG法自製40%Pt氧化物擔載觸媒可獲得與商用PtRu/C觸媒相近的Pt粒徑(3-4奈米),以CO-stripping onset potential與氫氣氧化反應(HOR)在純氫、100和250ppm CO環境下的旋轉圓盤電極分析與定電位分析,發現以磷摻雜的40Pt/P-Ti0.7Ru0.3O2-b12 與40Pt/W0.7Ru0.3O2觸媒具有較商用20Pt10Ru/C與40Pt/Ti0.7Ru0.3O2觸媒高的抗CO能力、氫氣氧化活性與穩定性。


Proton exchange membrane fuel cells (PEMFCs) are expected to have enormous power for both mobile and stationary applications (e.g., automotive, portable, electronics, etc.). Carbon supports are mainly used in electrocatalysts for fuel cells because of good electron conductivity and high surface area that may leads to good dispersion of active Pt particles. However, carbon corrosion under operating conditions of PEMFCs becomes a concern which can cause deterioration in the performance of Pt catalysts. To enhance durability and CO tolerance of anodic catalysts, mixed-oxide supports are examined in this study. A simple hydrothermal process is applied to synthesize supports and the influences of preparation parameters are examined, including pretreatment conditions, dual ion-doping, sequences of Ru inclusion, and changes of M in M0.7Ru0.3O2.
Pt loading is prepared by EG method. XRD results show that the prepared 40% Pt/P-Ti0.3Ru0.7O2 contains Pt particle size of 3-4 nm, similar with commercial PtRu/C catalysts. CO stripping and hydrogen oxidation reaction (HOR) under H2 with 100 and 250 pm CO are examined. The results indicate that 40Pt/P-Ti0.7Ru0.3O2-b12 and 40Pt/W0.7Ru0.3O2 catalysts exhibit improved CO tolerance, intrinsic activity and durability comparing to commercial PtRu/C and homemade 40% Pt/Ti0.7Ru0.3O2 catalysts.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 質子交換薄膜燃料電池 (PEMFC) 3 1.2.2 直接甲醇燃料電池 (DMFC) 4 1.2.3 碳載體觸媒 6 1.2.4 金屬氧化物觸媒載體 8 1.2.4.1 氧化鈦 (Titanium oxides、TiOx) 9 1.2.4.2 氧化釕 (Ruthenium oxides、RuOx) 10 1.2.4.3 鎢氧化物 (Tungsten oxides、WOx) 10 1.2.4.4 氧化鋯 (Zirconium oxides、ZrOx) 11 1.2.4.5 氧化鉬 (Molybdenum oxides、MoOx) 11 1.2.4.6 混合金屬氧化物 11 1.2.5 陰離子摻雜之觸媒載體 13 1.2.5.1 陰離子摻雜之二氧化鈦 (Titanium dioxide) 13 1.2.5.2 陰離子摻雜之混合金屬氧化物 14 1.2.6 合金觸媒 15 1.3 研究目的與方法 15 第二章、研究設備與方法 17 2.1 研究架構 17 2.2 藥品與儀器設備 17 2.2.1 藥品與氣體部分 17 2.2.2 儀器部分 18 2.3 觸媒製備方法 20 2.3.1 水熱法製備不同前處理氣氛之Ti0.7Ru0.3O2載體 20 2.3.2 水熱法/溶膠凝膠法製備氮摻雜之Ti0.7Ru0.3O2載體 21 2.3.3 水熱法製備磷摻雜之Ti0.7Ru0.3O2載體 22 2.3.4 水熱法製備不同混合氧化物之M0.7Ru0.3O2載體 23 2.3.5 改良式乙二醇還原法 24 2.3.5.1 40wt%Pt觸媒製備 24 2.3.5.2 40PtRu/Ti0.8Ru0.2O2觸媒製備 24 2.4 材料與鑑定方法 25 2.4.1 X光繞射分析 (XRD) 25 2.4.2 元素分析 (EA) 26 2.4.3 表面積與孔隙度測定儀 (BET) 26 2.4.4 穿透式電子顯微鏡 (TEM) 27 2.4.5 掃描式電子顯微鏡-能量散射光譜儀 (SEM-EDX) 27 2.4.6 感應耦合電漿原子放射光譜儀 (ICP-AES) 28 2.4.7 X光吸收光譜 (XANES) 28 2.5 電化學分析方法 29 2.5.1 薄膜電極的製備 29 2.5.2 循環伏安法 (Cyclic voltammetry) 30 2.5.3 CO電催化氧化分析 (CO-stripping) 30 2.5.4 氫氣氧化反應之陽極測試條件 (HOR) 30 2.5.5 電化學活性表面積計算 31 2.5.6 塔弗方程式 (Tafel equation) 31 2.5.7 氫氣氧化之分析方法 32 2.5.8 陽極觸媒穩定度測試條件 33 第三章、結果與討論 34 3.1 載體前處理氣氛對40%Pt/ Ti0.7Ru0.3O2觸媒的影響 34 3.1.1 載體與觸媒特性分析 34 3.1.1.1 XRD分析 34 3.1.1.2 氮氣等溫吸/脫附分析 38 3.1.1.3 材料形貌與EDX 39 3.1.1.4 Pt L3-edge 之XANES與EXAFS分析 42 3.1.2 載體前處理對觸媒之電化學反應分析 46 3.1.2.1 觸媒之循環伏安法分析 46 3.1.2.2 自製觸媒的CO氧化脫附分析 48 3.1.2.3 觸媒之氫氣氧化反應分析 50 3.1.2.4 250ppm CO/H2環境下觸媒的氫氣氧化反應分析 56 3.2 氮摻雜載體對40%Pt/Ti0.7Ru0.3O2觸媒的影響 62 3.2.1 載體與觸媒特性分析 62 3.2.1.1 XRD分析 62 3.2.1.2 氮氣等溫吸/脫附分析 65 3.2.1.3 材料之組成與型態分析 67 3.2.2 氮摻雜載體對觸媒之電化學反應分析 69 3.2.2.1 觸媒之循環伏安法分析 69 3.2.2.2 觸媒之氫氣氧化反應分析 72 3.3 磷摻雜載體對40Pt/P-Ti0.7Ru0.3O2觸媒的影響 76 3.3.1 載體與觸媒之特性分析 76 3.3.1.1 XRD分析 76 3.3.1.2氮氣等溫吸/脫附分析 81 3.3.1.3材料之組成與型態分析 82 3.3.1.4 材料之X光吸收近光譜分析 85 3.3.2 磷摻雜載體對觸媒之電化學反應分析 92 3.3.2.1 觸媒之循環伏安法分析 92 3.3.2.2 觸媒之氫氣氧化反應分析 94 3.4 40PtRu/Ti0.8Ru0.2O2觸媒之分析 99 3.4.1 40PtRu/Ti0.8Ru0.2O2觸媒之特性分析 99 3.4.1.1 XRD分析 99 3.4.1.2 材料之組成與型態分析 101 3.4.1.3 材料之X光吸收近光譜分析 103 3.4.2 40PtRu/Ti0.8Ru0.2O2觸媒之電化學反應分析 110 3.4.2.1 觸媒之循環伏安法分析 110 3.4.2.2 觸媒之氫氣氧化反應分析 112 3.5 不同混合金屬氧化物載體對40wt%Pt觸媒的影響 116 3.5.1混合氧化物載體對觸媒之特性分析 116 3.5.1.1 XRD分析 116 3.5.1.2 氮氣等溫吸/脫附分析 118 3.5.1.3 材料之組成分析 119 3.5.2混合氧化物載體對觸媒之電化學反應分析 120 3.5.2.1 觸媒之循環伏安法分析 120 3.5.2.2 觸媒之氫氣氧化反應分析 122 3.6 陽極觸媒耐久度測試 126 3.7 CO耐受性探討 131 第四章、結論 132 第五章、參考文獻 134 附錄一 Nafion 厚度計算 141 附錄二 同步XRD分析結果 141 附錄三 反應前後觸媒在250ppm CO/H2 環境下的I-t 曲線 143 附錄四 磷摻雜觸媒之膜電極組(MEA)測試 144 附錄五 改變氣體進料位置之耐久度測試 145 附錄六 陽極觸媒耐久度測試(固定E=0.2V) 148

1. Appleby, A.J., Issues in fuel cell commercialization. Journal of Power Sources, 1996. 58(2): p. 153-176.
2. 衣寶廉, 黃朝榮, 林修正, 燃料電池-原理與應用. 2005, 台北: 五南圖書出版.
3. 李書鋒, 質子交換膜燃料電池性能之理論探討. 2004, 大葉大學.
4. H.‐F. Oetjen, V.M.S., U. Stimming and F. Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas. J. Electrochem. Soc, 1996. 143(12): p. 3838-3842.
5. 謝宗達, RuOxHy助觸媒的合成與其對Pt電催化甲醇氧化反應的影響. 2013, 台灣科技大學.
6. J.C, A., C. K.A.M, and Davis. Proc.9th Word Hydrogen Energy Conf Pairs. 1992. France.
7. Samjeské, G., et al., CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochimica Acta, 2002. 47(22–23): p. 3681-3692.
8. Götz, M. and H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta, 1998. 43(24): p. 3637-3644.
9. P. K. Shen, K.Y.C.a.A.C.C.T., CO Oxidation on Pt‐Ru WO3 Electrodes. J. Electrochem. Soc, 1995. 142(6): p. L85-L86.
10. Papageorgopoulos, D.C., M. Keijzer, and F.A. de Bruijn, The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochimica Acta, 2002. 48(2): p. 197-204.
11. Deivaraj, T.C., W. Chen, and J.Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. Journal of Materials Chemistry, 2003. 13(10): p. 2555-2560.
12. Park, K.-W., et al., Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. The Journal of Physical Chemistry B, 2002. 106(8): p. 1869-1877.
13. Park, K.-W., et al., PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell. Journal of Catalysis, 2004. 224(2): p. 236-242.
14. Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273.
15. Shahgaldi, S. and J. Hamelin, Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 2015. 94: p. 705-728.
16. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1–2): p. 1-24.
17. Meier, J.C., et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol, 2014. 5: p. 44-67.
18. Meier, J.C., et al., Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis, 2012. 2(5): p. 832-843.
19. Zhang, Z., et al., An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy & Environmental Science, 2014. 7(8): p. 2535-2558.
20. Graves, J.E., et al., The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of metal coatings. Journal of Applied Electrochemistry, 1991. 21(10): p. 848-857.
21. Fujishima, A. and K. Honda, Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature, 1972. 238(5385): p. 37-38.
22. Tauster, S.J., S.C. Fung, and R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 1978. 100(1): p. 170-175.
23. Huang, S.-Y., et al., Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the American Chemical Society, 2009. 131(39): p. 13898-13899.
24. Huang, S.-Y., P. Ganesan, and B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011. 102(1–2): p. 71-77.
25. Zhang, L., et al., Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Applied Energy, 2013. 103: p. 507-513.
26. Suffredini, H.B., et al., Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry Communications, 2004. 6(10): p. 1025-1028.
27. Lasch, K., et al., Mixed conducting catalyst support materials for the direct methanol fuel cell. Journal of Power Sources, 2002. 105(2): p. 305-310.
28. Pylypenko, S., et al., Composition- and Morphology-Dependent Corrosion Stability of Ruthenium Oxide Materials. ACS Applied Materials & Interfaces, 2009. 1(3): p. 604-611.
29. Benson, J.E., H.W. Kohn, and M. Boudart, On the reduction of tungsten trioxide accelerated by platinum and water. Journal of Catalysis, 1966. 5(2): p. 307-313.
30. Schlatter, J.C. and M. Boudart, Hydrogenation of ethylene on supported platinum. Journal of Catalysis, 1972. 24(3): p. 482-492.
31. Liu, Y., et al., Transition metal oxides as DMFC cathodes without platinum. Journal of the Electrochemical Society, 2007. 154(7): p. B664-B669.
32. Horkans, J. and M. Shafer, An investigation of the electrochemistry of a series of metal dioxides with rutile‐type structure: MoO2, WO2, ReO2, RuO2, OsO2, and IrO2. Journal of The Electrochemical Society, 1977. 124(8): p. 1202-1207.
33. García, B.L., R. Fuentes, and J.W. Weidner, Low-Temperature Synthesis of a PtR/Nb0.1Ti0.9O2 Electrocatalyst for Methanol Oxidation. Electrochemical and Solid-State Letters, 2007. 10(7): p. B108-B110.
34. Nguyen, T.-T., et al., Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014. 154–155: p. 183-189.
35. Lo, C.-P., et al., TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Applied Catalysis B: Environmental, 2013. 140–141: p. 133-140.
36. Ho, V.T.T., et al., Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10): p. 4194-4200.
37. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 2001. 293(5528): p. 269-271.
38. Burda, C., et al., Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters, 2003. 3(8): p. 1049-1051.
39. Guo, X., et al., Fabrication of N-doped TiO2/activated carbon fiber composites with enhanced photocatalytic activity. Textile Research Journal, 2014: p. 0040517514532159.
40. Cong, Y., et al., Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. The Journal of Physical Chemistry C, 2007. 111(19): p. 6976-6982.
41. Wang, W., O. Savadogo, and Z.-F. Ma, The oxygen reduction reaction on Pt/TiOxNy-based electrocatalyst for PEM fuel cell applications. Journal of Applied Electrochemistry, 2012. 42(10): p. 857-866.
42. Baker, L.R., et al., Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide. The Journal of Physical Chemistry C, 2011. 115(32): p. 16006-16011.
43. Shi, F., et al., Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles. Nano Letters, 2013. 13(9): p. 4469-4474.
44. Natori, H., K. Kobayashi, and M. Takahashi, Preparation and photocatalytic property of phosphorus-doped TiO2 particles. Journal of oleo science, 2009. 58(7): p. 389-394.
45. Avasarala, B., et al., Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. Journal of materials Chemistry, 2009. 19(13): p. 1803-1805.
46. Thotiyl, M.M.O. and S. Sampath, Electrochemical oxidation of ethanol in acid media on titanium nitride supported fuel cell catalysts. Electrochimica Acta, 2011. 56(10): p. 3549-3554.
47. Chen, J., et al., Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chemical communications, 2010. 46(40): p. 7492-7494.
48. Cui, Z., R.G. Burns, and F.J. DiSalvo, Mesoporous Ti0.5Nb0.5N Ternary Nitride as a Novel Noncarbon Support for Oxygen Reduction Reaction in Acid and Alkaline Electrolytes. Chemistry of Materials, 2013. 25(19): p. 3782-3784.
49. Cui, Z., M. Yang, and F.J. DiSalvo, Mesoporous Ti0.5Cr0.5N Supported PdAg Nanoalloy as Highly Active and Stable Catalysts for the Electro-oxidation of Formic Acid and Methanol. ACS Nano, 2014. 8(6): p. 6106-6113.
50. Xiao, Y., et al., Increasing Pt methanol oxidation reaction activity and durability with a titanium molybdenum nitride catalyst support. Journal of Power Sources, 2015. 273: p. 33-40.
51. Liu, Z.W., et al., Phosphorus‐doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angewandte Chemie, 2011. 123(14): p. 3315-3319.
52. Hong, L., et al., High performance of polyoxometalate/PtPd nanoparticles/carbon nanotubes electrocatalysts for the methanol electrooxidation. International Journal of Hydrogen Energy, 2013. 38(25): p. 11074-11079.
53. Hassan, A., et al., Effect of heat treatment on the activity and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton exchange membrane fuel cells. Journal of Power Sources, 2014. 247: p. 712-720.
54. Hsieh, C.-T., Y.-S. Chang, and K.-M. Yin, Pt–Sn Nanoparticles Decorated Carbon Nanotubes as Electrocatalysts with Enhanced Catalytic Activity. The Journal of Physical Chemistry C, 2013. 117(30): p. 15478-15486.
55. Rocha, T.A., et al., Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. Journal of Applied Electrochemistry, 2013. 43(8): p. 817-827.
56. 陳力嘉, 鈦釕混合氧化物擔載Pt觸媒的製備與其在電化學反應特性研究. 2015, 台灣科技大學.
57. Schmidt, T., et al., Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration. Journal of The Electrochemical Society, 1998. 145(7): p. 2354-2358.
58. Lin, R.-B. and S.-M. Shih, Kinetics of hydrogen oxidation reaction on Nafion-coated Pt/C electrodes under high overpotentials. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5–6): p. 365-370.
59. Marković, N.M., et al., Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions. The Journal of Physical Chemistry B, 1999. 103(3): p. 487-495.
60. Shih, Y.-H., G.V. Sagar, and S.D. Lin, Effect of Electrode Pt Loading on the Oxygen Reduction Reaction Evaluated by Rotating Disk Electrode and Its Implication on the Reaction Kinetics. The Journal of Physical Chemistry C, 2008. 112(1): p. 123-130.
61. Higuchi, E., H. Uchida, and M. Watanabe, Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode. Journal of Electroanalytical Chemistry, 2005. 583(1): p. 69-76.
62. Ho, V.T.T., et al., Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2011. 133(30): p. 11716-11724.
63. Akalework, N.G., et al., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry, 2012. 22(39): p. 20977-20985.
64. Rochefort, D. and A.-L. Pont, Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. Electrochemistry Communications, 2006. 8(9): p. 1539-1543.
65. Markovic, N., B. Grgur, and P. Ross, Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 1997, 1997. 101(27): p. 5405-5413.
66. Seto, K., et al., The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. J. Electroanal. Chem,, 1987. 226(1-2): p. 351-360.
67. Conway, B. and B. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002. 47(22): p. 3571-3594.
68. Kunimatsu, K., et al., Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochimica acta 2007. 52(18): p. 5715-5724.
69. 張傑鈞, 氮摻雜二氧化鈦奈米管於燃料電池觸媒載體的應用. 2010, 國立中央大學.
70. Liu, Y., et al., Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005. 61(1): p. 11-18.
71. Li, F., et al., Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C, 2009. 113(42): p. 18134-18141.
72. Lv, Y., et al., Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation. Journal of Alloys and Compounds, 2009. 488(1): p. 314-319.

QR CODE