簡易檢索 / 詳目顯示

研究生: 楊竣宇
Chun-Yu Yang
論文名稱: 高效率微型逆變器之研製
Study and Implementation of a High-Efficiency Micro-Inverter
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉益華
Yi-Hua Liu
劉添華
Tian-Hua Liu
陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
林長華
Chang-Hua Lin
王順忠
Shun-Chung Wang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 美國加州能源委員會微型逆變器順向/返馳式轉換器
外文關鍵詞: California energy commission, Module Integrated Solar Micro-inverter, Forward/Flyback converter
相關次數: 點閱:193下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要研製一高效率微型逆變器,其係一種併網型隔離式太陽能系統,可獨立將單片太陽能面板能量轉換至市電電網,解決傳統太陽能板模組之間的局部陰影遮蔽問題。系統主要針對雙級式電路架構進行研究,前級採用本文所提出之諧振式主動箝位順向/返馳式電路架構,負責轉換太陽能板能量至高壓,以提供後級逆變器足夠的電壓調節空間,其電路工作模式結合了順向式與返馳式轉換器之概念,提高了傳統返馳式轉換器在變壓器上的利用率,並且在其電路元件參數的設計上加入了額外的諧振概念,可有效提升電路開關之零電壓切換之範圍、次級側二極體有零電流截止的優點,只需更改元件的參數即可達成定頻脈波關渡調變操作,有著高效率且容易實現的電路特性。後級採用全橋式逆變器電路架構,配合單臂切換技術在正弦脈波寬度調變的優化,可減少在全橋式逆變器開關的切換損失,提升電路效率。本文以數位信號處理器為控制核心來實現太陽能最大功率追蹤與鎖相迴路控制,並達成電路性能改善與優化目的。
最後研製了一台250W微型逆變器來驗證本文所提架構的可行性,並且針對不同的負載應用,設計了獨立運轉與市電併聯兩種操作模式。經實驗測試,微型逆變器在不同的日照條件下,都能準確地追到最大功率點,並且前級諧振式主動箝位順向/返馳式轉換器最高效率可達97.2%,後級全橋式逆變器最高效率也有97.5%以上,整機系統效率在美國加州能源委員會規範下可達94.2%。


This dissertation presents a highly efficient micro-inverter, which is a grid-tied isolated micro-inverter for photovoltaic (PV) system that can individually extract the maximum solar power from each PV panel for transfer to the AC utility network and solve the problem of shadowing effects between conventional PV panels. This study focuses on the two-stage topology. The active-clamp forward/flyback converter topology is adopted for the front-end of the system, which converts energy from the PV panel to a higher voltage for the post-stage inverter, while providing enough room for modulation. Moreover, the topology combines the new design concepts with forward and flyback converters to increase the utilization of the flyback transformer, at the same time the resonant mechanism is added to the converter unit design, thus bringing the benefit of extending the MOSFET’s zero-voltage-switching (ZVS) region and having the secondary diodes achieve zero-current-switching (ZCS). Furthermore, the fixed frequency pulse-width modulation (PWM) can be achieved to control the converter by only changing the component value. It retains the advantages of high efficiency and easy to control. With the single-arm switching technique, the inverter efficiency can be increased dramatically due to the switching loss of particular switching arm is eliminated. The improvements and optimizations, along with maximum power point tracking (MPPT) and the phase-locked loop control are implemented with a digital signal processor (DSP).
Finally, a prototype system of the 250W micro-inverter system is implemented to verify the feasibility of the proposed scheme. Furthermore, standalone and grid-tied modes are designed for different applications. The experimental results show that the system is able to track the maximum power point in different irradiation conditions, also the peak efficiency of the active clamp forward/flyback and full bridge inverter can achieve 97.2% and 97.5% respectively, and the system total efficiency can reach 94.2% under the standard proposed by California energy commission (CEC).

摘 要 i Abstract ii 誌 謝 iv 目 錄 v 符號索引 vii 圖索引 x 表索引 xiii 第一章 緒論 1 1.1研究背景與動機 1 1.2研究內容 5 1.3論文章節介紹 5 第二章 太陽能微型逆變器 6 2.1前言 6 2.2太陽能微型逆變器種類 8 2.2.1兩級式架構 9 2.2.2單級式架構 10 2.2.3主動濾波架構 12 2.2.4微型逆變器架構討論與比較 13 2.3雙級式架構之直流轉換器 14 2.3.1電流饋入型直流轉換器 15 2.3.2諧振型直流轉換器 16 2.3.3耦合電感型直流轉換器 17 第三章 主動箝位順向/返馳式轉換器 20 3.1傳統主動箝位順向/返馳式轉換器 20 3.1.1電路動作原理分析 21 3.1.2電路穩態分析 30 3.2諧振式主動箝位順向/返馳式轉換器 32 3.2.1動作原理分析 32 3.2.2電路製作與實驗結果 43 第四章 高效率全橋逆變器 56 4.1傳統全橋式逆變器 56 4.2全橋式逆變器之單臂切換控制 61 4.2.1電路動作原理分析 61 4.2.2電路製作與實驗結果 63 第五章 微型逆變器之系統整合 67 5.1系統規劃 67 5.1.1微型逆變器之獨立運轉控制模式 68 5.1.2微型逆變器之市電併聯控制模式 69 5.2實驗結果 71 5.2.1獨立運轉供電測試 73 5.2.2市電併聯供電測試 78 第六章 總結與未來展望 80 6.1結論 80 6.2未來展望 81 參考文獻 82

[1] W. Hoffmann, “PV on the Way from a Few Lead Markets to a World Market,” in Proc. IEEE WCPEC, 2006, pp. 2454–2456.
[2] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. Portillo Guisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A survey,” IEEE Trans. Industrial Electron., vol. 53, no. 4, pp. 1002–1016, Aug. 2006.
[3] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules,” IEEE Trans. Industrial Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.
[4] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis,” IEEE Trans. Industrial Electronics, vol. 55, no. 7, pp. 2610-2621, July 2008.
[5] C. Y. Yang, Y. C. Chang, C. H. Li, S. J. Cheng, Q. M. Huang, C. C. Chuang, H. J. Chiu, and Y. K. Lo, “A Module-Integrated Isolated Solar Micro-inverter,” in Proc. IEEE INDIN Conf., 2012, pp. 780–785.
[6] S. Harb and R. Balog, “Reliability of Candidate Photovoltaic Module Integrated-inverter Topologies-a Usage Model Approach,” IEEE Trans. Power Electronics, pp. 3019-3027, vol. 28, no. 6, June 2013.
[7] M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for Single-phase Grid Connected Photovoltaic Systems—An Overview,” in Proc. IEEE PESC, 2002, pp. 1995–2000.
[8] A. Massi Pavan, S. Castellan, S. Quaia, S. Roitti, and G. Sulligoi, “Power Electronic Conditioning Systems for Industrial Photovoltaic Fields: Centralized or String Inverters,” in Proc. IEEE ICCEP, 2007, pp. 208–214.
[9] Q. Li and P. Wolfs, “A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1320–1333, May 2008.
[10] H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. Shen, “A review of power Decoupling techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems,” IEEE Trans. Power Electronics, vol. 28, no. 6, pp. 2711-2726, June 2013.
[11] C. H. Li, C. Y. Yang, Y. C. Chang, H. J. Chiu, Y. K. Lo, C. C. Chuang, and S. J. Cheng, “A Module-Integrated Isolated Solar Micro-inverter without Electrolytic Capacitors,” in Proc. IEEE ICALIP, 2012, pp. 247–253.
[12] F. Chen, Q. Zhang, A. Amirahmadi, and I. Batarseh, “Modeling and Analysis of DC-link Voltage for Three-phase Four-wire Two-stage Micro-inverter,” in Proc. IEEE APEC, 2014, pp. 3000–3005.
[13] H. J. Chiu, Y. K. Lo, C. Y. Yang, S. J. Cheng, C. M. Huang, and C. C. Chuang, “A Module-Integrated Isolated Solar Microinverter,” IEEE Trans. Industrial Electronics, vol. 60, no. 2, pp 781-788, Feb. 2013.
[14] M. Joshi, E. Shoubaki, R. Amarin, B. Modick, and J. Enslim, “A High-Efficiency Resonant Solar Micro-Inverter,” in Proc. IEEE Power Electronics and Applications Conf., 2011, pp 1-10.
[15] D. Li, Z. Zhang, B. Xu, Min, and Z. Qian, “A Method of Power Decoupling for Long Life Micro-inverter,” in Proc. IECON, 2011, pp 802-807.
[16] Y. M. Chen and C. Y. Liao, “Three-Port Flyback-Type Single-Phase Micro-inverter With Active Power Decoupling Circuit,” in Proc. IEEE IECON, 2011, pp 501-506.
[17] C. Y. Liao, Y. M. Chen, and W. H. Lin, “Forward-type Micro-inverter With Power Decoupling,” in Proc. IEEE ECCE, 2013, pp 3277-3282.
[18] H. Hu, S. Harb, N. Kutkut, T. Batarseh, and Z. J. Shen, “Power Decoupling Techniques for Micro-inverters in PV Systems-a Review ,” in Proc. IEEE ECCE, 2010, pp 3235-3240.
[19] W. Bower, C. Whitaker, W. Erdman, M. Behnke, and M. Fitzgerald, “Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems,” Prepared for the California Energy Commission, Oct 2004.
[20] J. M. Kwon and B. H. Kwon, “High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems,” IEEE Trans. Power Electronics, vol. 24, no. 1, pp. 108-115, Jan. 2009.
[21] S. S. Lee and W. Moon, “High-Efficiency Boost Half-Bridge Converter With Fast Boost Current Transferring ZVS Operation,” IEEE Trans. Power Electronics, vol. 23, no. 4, pp. 1822-1829, July 2009.
[22] X. Xie, J. Zhang, C. Zhao, Z. Zhao, and Z. Qian, “Analysis and Optimization of LLC Resonant Converter With a Novel Over-Current Protection Circuit,” IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 435–443, Mar. 2013.
[23] J. Y. Lee, Y. S. Jeong, and B. M. Han, “An Isolated DC/DC Converter Using High-Frequency Unregulated LLC Resonant Converter for Fuel Cell Applications,” IEEE Trans. Power Electronics, vol. 58, no. 7, pp. 2926–2934, July 2011.
[24] G. Spiazzi, P. Mattavelli, and A. Costabeber, “High Step-Up Ratio Flyback Converter With Active Clamp and Voltage Multiplier,” IEEE Trans. Industrial Electronics, vol. 26, no. 11, pp. 3205–3214, Nov. 2011.
[25] Z. Zhang, X. H. He, and Y. F. Liu, “An Optimal Control Method for Photovoltaic Grid-Tied-Interleaved Flyback Microinverters to Achieve High Efficiency in Wide Load Range,” IEEE Trans. Power Electronics, vol. 28, no. 11, pp. 5074–5087, Nov. 2013.
[26] Z. Zhang, M. Chen, W. Chen, and Z. Qian, “Design and Analysis of the Synchronization Control Method for BCM/DCM Current-mode Flyback Micro-inverter,” in Proc. IEEE APEC, 2013, pp. 68–75.
[27] P. H. Kuo, T. J. Liang, J. F. Chen, and S. M. Chen, “An Isolated High Step-Up Forward/Flyback Active-Clamp Converter With Output Voltage Lift,” in Proc. IEEE ECCE, 2010, pp 542-548.
[28] M. M. Jovanovic, “A Technique for Reducing Rectifier Reverse-Recovery-Related Losses in High-Power Boost Converters,” IEEE Trans. Power Electronics, vol. 13, no. 5, pp 932-941, Sep. 1998.
[29] C. Yang, H. F. Xiao, and S. J. Shao, “An Improved Two-switch Buck-boost Converter With Reduced Reverse-recovery Losses,” in Proc. IEEE ECCE, 2010, pp 1959-1964.
[30] C. L. Nge, O. M. Midtgard, L. Norum, and T. O. Saetre, “Power Loss Analysis for Single Phase Grid-Connected PV Inverters,” in Proc. IEEE INTELEC, 2009, pp 1-5.
[31] G. Vazquez, T. Kerekes, A. Rolan, D. Aguilar, A. Luna, and G. Azevedo, “Losses and CMV Evaluation in Transformerless Grid-Connected PV Topologies,” in Proc. IEEE ISIE Conf., 2009, pp 544-548.
[32] T. H. Ai, J. F. Chen, and T. J. Liang, “A Random Switching Method for HPWM Full-bridge Inverter,” IEEE Trans. Industrial Electronics, vol. 49, no. 3, pp. 595-597, June 2002.
[33] D. N. Zmood and D. G. Holmes, “Stationary Frame Current Regulation of PWM Inverters With Zero Steady-state Error,” IEEE Trans. Power Electronics, vol. 18, no. 3, pp. 814–822, May 2003.
[34] G. Shen, X. Zhu, J. Zhang, and D. Xu, “A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter,” IEEE Trans. Industrial Electronics, vol. 57, no. 6, pp. 2610-2621, June 2010.
[35] J. Dannehl, C. Wessels, and F. W. Fuchs, “Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers With LCL Filters,” IEEE Trans. Industrial Electronics, vol. 56, no. 2, pp. 380-388, Feb. 2009.
[36] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Trans. Power Electronics, vol. 20, no. 4, pp. 963–973, July 2005.
[37] A. Y. Sendjaja and V. Kariwala, “Decentralized Control of Solid Oxide Fuel Cells,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 163-170, May 2011.
[38] S. Yang, Q. Lei, F. Z. Peng, and Z. Qian, “A Robust Control Scheme for Grid-Connected Voltage-Source Inverters,” IEEE Trans. Industrial Electronics, vol.58, no. 1, pp. 202-212, Jan. 2011.
[39] E4360A Modular Solar Array Simulator Mainframe datasheet from www.home.agilent.com.
[40] CS6P-250P PV module datasheet from www. canadiansolar.com.

無法下載圖示 全文公開日期 2019/07/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE