簡易檢索 / 詳目顯示

研究生: 賴致均
Chih-Chun Lai
論文名稱: 吸振器之吸振與振能回收最佳化研究
The Study of Tuned Mass Absorber on Optimization of Vibration Absorption and Power Harvesting
指導教授: 黃世欽
Shyh-Chin Huang
口試委員: 徐茂濱
Mau-Pin Hsu
楊嘉豪
Jia-Hao Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 吸振器吸振振能回收
外文關鍵詞: tuned mass absorber, vibration absorption, power harvesting
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討吸振器之吸振與振能回收之最佳化研究,首先推導吸振器之運動方程式,並定義吸振指標,了解影響主系統功率之參數,分別為質量比、頻率比與阻尼比。經由改變參數,掌握主系統功率的變化趨勢,接著利用吸振系統兩質塊之相對振幅推導出阻尼回收振能功率,並定義功率回收指標藉以分析功率回收效應。之後進行最佳化分析,比較在不同趨動頻寬之下,各參數對吸振器之吸振與振能回收效應的趨勢走向。並依本文兩指標之定義,提出吸振效應與功率回收效應兼具之下之最佳狀態設計參數値,提供使用者一設計參考。文章最後列舉未來可行之建議研究方向。


    The purpose of this thesis is to explore the tuned mass absorber on optimization of vibration absorption and power harvesting. First, by driving the equation of motion, the parameters of the main system power were obtained, and they are mass ratio, frequency ratio, and damping ratio. And by changing the parameters, the changing tendency of the main system power were then gained. Afterward, utilizing the relative amplitude of the absorber and main system to drive vibration power harvesting by damping, and define power harvesting index to analyze the effects. Next, we analyzed the optimization in order to compare the absorptions and power harvesting effects of the absorbers for ever parameters in different driving frequencies. Besides, the optimal design values of the absorption and power harvesting effects are also presented by the way of numerical results. In the end of the paper, some suggestions of future study are also provided.

    摘 要 I ABSTRACT II 誌 謝 III 目 錄 V 圖 表 索 引 VII 符 號 索 引 XI 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機與目的 3 1.3 本文架構 4 第二章 吸振指標探討 9 2.1 吸振器之運動方程式 9 2.2 吸振指標之定義 13 2.3 參數對系統振動功率及吸振效應之探討 14 2.3.1 阻尼比之影響 15 2.3.2 頻率比之影響 18 2.3.3 質量比之影響 19 第三章 功率回收指標探討 32 3..1 回收功率指標之推導 32 3.2 功率回收指標之定義 37 3.3 參數對功率回收效應之探討 37 3.3.1 阻尼比之影響 37 3.3.2 調諧頻率比之影響 39 3.3.3 質量比之影響 40 第四章 吸振與功率回收最佳化探討 50 4.1 最佳化方法 51 4.1.1 地形鑑識法 51 4.1.2 複合形法 53 4.2 目標函數 55 4.3 數值結果與討論 57 第五章 結論與未來研究方向 83 5.1 結論 83 5.2 未來可行之研究發展方向 86 參 考 文 獻 88 作 者 簡 介 91

    參 考 文 獻

    [1] J. P. Den Hartog, Mechanical Vibration, 4th edition, McGraw-Hill, New York(1956).
    [2] A. G. Thompson, Auxiliary Mass Throw in a Tuned and Damped Vibration Absorber, Journal of Sound and Vibration, Vol. 70, pp. 481-486(1980).
    [3] F. M. Lewis, The Extended Theory of the Viscous Vibration Damper, Journal of Applied Mechanics, pp. 377-382(1955).
    [4] J. C. Snowdon, Dynamic Vibration Absorbers That Have Increased Effectiveness, Journal of Engineering for Industry, pp. 940-945(1974).
    [5] T. Ioi and K. Ikeda, On the Dynamic Damped Absorber of the Vibration System, Bull. Japan Society of Mechanical Engineering, Vol. 21, pp. 64-71(1978).
    [6] G. B. Warburton, Optimum Absorber Parameters for Minimizing Vibration Response, Earthquake Engineering and Structural Dynamics, Vol. 9, pp. 251-262(1981).
    [7] J. E. Brock, A Note on the Damped Vibration Absorber, Journal of Applied Mechanics, vol. 68, pp. A-284(1946).
    [8] V. A. Bapat and P. Prabhu, Optimum Design of Lanchester Damper for a Viscously Damped Single Degree of Freedom System Using Minimum Force Transmissibility Criterion, Journal of Sound and Vibration, Vol. 67, pp. 113-119(1979).
    [9] B. G. Korenev and L. M. Reznilov, Dynamic Vibration Absorbers Theory and Technical Applications, John Wiley & Sons, Inc.(1993).
    [10] J. Q. Sun, M. R. Jolly and M. A. Norris, Passive, Adaptive and Active Tuned Vibration Absorbers - A Survey, Journal of Mechanical Design, Vol. 117, pp. 234-242(1995).
    [11] M. Z. Ren, A Variant Design of the Dynamic Vibration Absorber, Journal of Sound and Vibration, Vol. 254, pp. 762-770(2001).
    [12] K. Liu and J. Liu, The Damped Dynamic Vibration Absorber: Revisited and New Result, Journal of Sound and Vibration, Vol. 284, pp. 1181-1189(2005).
    [13] 曹淵閔,動態吸振器在工程上的應用探討,國立台灣科技大學碩士學位論文,2006。
    [14] C. B. Williams, R. B. Yates, Analysis of a micro-electric generator for Microsystems, Sensor and Actuators A, vol. 52, pp. 8-11(1996).
    [15] S. Roundy, P. K. Wright, J. Rabaey, A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes, Computer Communications, Vol. 26, pp. 1131-1144(2003).
    [16] N. G. Stephon, On Energy Harvesting from Ambient Vibration, Journal of Sound and Vibration, Vol. 293, pp. 409-425(2006).
    [17] H. A. Sodano, D. J. Inman, G. Park, Estimation of Electric Charge Output for Piezoelectric Energy Harvesting, Strain, vol. 40, pp. 49-58(2004).
    [18] H. A. Sodano, D. J. Inman, G. Park, A Review of Power Harvesting from Vibration using Piezoelectric Materials, The Shock and Vibration Digest, vol. 36, pp. 197-205(2004).
    [19] A. Törn and S. Viitanen, Topographical Global Optimization Using Pre- Sampled Points, Journal of Global Optimization, Vol. 5, pp. 267-276(1994).
    [20] S. S. Rao, Engineering Optimization- Theory and Practice, 3th
    edition, John Wiley & Sons, Inc.(1996).

    QR CODE