簡易檢索 / 詳目顯示

研究生: 藍偉恩
Wei-En Lan
論文名稱: 大型廳堂空間之複合式通風與噪音控制解析
A Strategic Study on Hybrid Ventilation and Noise Reduction of a Large Hall Space
指導教授: 江維華
Wei-Hwa Chiang
口試委員: 蔡欣君
Shin-Jyun Tsaih
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 建築永續性聲學設計噪音控制自然通風
外文關鍵詞: building sustainability, acoustic design, noise control, natural ventilation
相關次數: 點閱:327下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著近年永續性發展的趨勢,增加了建築聲學性能的設計需求。對於熱濕氣候區的建築室內空間而言,有效應用複合式通風手法能降低空調設備耗能,卻必須檢討藉由通風口侵入室內空間的外部噪音。本文以位於海南島之1000席大型表演廳為研究案例,同步分析浮力通風塔應用於空調使用時之排熱效果,與其衍生之隔音問題,進一步探討兩者之互動關係。利用scSTREAM分析軟體,以CFD方法,進行廳堂室內空間的流場數值模擬,並利用BEM方法計算外部噪音侵入廳堂內部的音壓大小,針對排風口開口部面積大小的變因,探討自然通風與浮力通風塔,應用於對背景噪音環境要求較高的建築室內空間之可行性。


As the trend of building sustainability in recent years, the design requirements of architectural acoustics performance increased. Effective natural or hybrid ventilation system is helpful to reduce air-conditioning energy consumption. On the other hand, natural ventilation strategies challenged the common practice in acoustic design. Case studies on building acoustic solutions associated with natural ventilation were reviewed with a large auditorium that induces heat evacuation. Carry out the hall interior space flow field simulation by analysis using CFD method. And calculate the external noise sound pressure by BEM method. Discuss the feasibility of applying natural ventilation strategies and buoyancy ventilation tower in an auditorium space, with the variation of the size of the exhaust opening.

第 1 章 緒論 12 1-1 研究動機 12 1-2 研究背景與理論說明 13 1-2-1 複合式通風系統 13 1-2-2 噪音控制與建築室內聲學 19 1-2-3 聲學數值方法 23 1-3 研究內容 28 第 2 章 基本設定與條件 30 2-1 廳堂室內通風環境 30 2-1-1 室內熱源發熱量 30 2-1-2 空調設備風量計算 33 2-1-3 海南地區氣候條件 38 2-2 廳堂聲環境 39 2-2-1 建築開口降噪量解析 39 2-2-2 吸音係數與反射定律 41 2-2-3 廳堂背景噪音需求 44 2-2-4 臨界頻率的計算與應用 47 第 3 章 具排風功能複合空調系統之節能效益解析 49 3-1 複合式空調系統之節能效益CFD模擬設定 49 3-1-1 基本設定與使用流程 49 3-1-2 運算範圍邊界設定 51 3-1-3 室內熱源設定 53 3-1-4 空調參數設定 55 3-1-5 模擬流程 59 3-2 複合式空調系統之節能效益CFD模擬結果 61 3-2-1 通風塔與供氣方式對於室內環境之影響 61 3-2-2 排風口面積對於室內環境之影響 66 3-2-3 外環境溫度對於置換式通風之影響 70 3-2-4 送風量優化對於室內環境之影響 72 第 4 章 通風塔排風口之降噪解析 75 4-1 排風口降噪BEM模擬設定 75 4-1-1 BEM模型運算範圍 75 4-1-2 分析設定 78 4-2 排風口降噪BEM模擬結果 81 4-2-1 排風口面積對於降噪量之影響 81 4-2-2 吸音材與I/O點位置對於降噪量之影響 84 4-2-3 通風塔尺寸對於降噪量之影響 90 第 5 章 結論與建議 92 5-1 結論 92 5-2 後續研究建議 94 參考文獻 95

[1] Haw, L.C., Saadatian, O., Sulaiman, M.Y., & Mat, S. (2012). Empirical study of a wind-induced natural ventilation tower under hot and humid climatic conditions. Energy and Buildings, 52, 28-38.
[2] 王家瑩(2007)。小型住宅建築於非冬季室內熱環境設計策略解析-以台科大土城校區實驗住宅為例。國立台灣科技大學建築研究所,台北。
[3] 許皓香(2013)。熱濕氣候區中大型建築物之對流及浮力通風應用。國立台灣科技大學建築研究所,台北。
[4] Linden, P.F. (1999). The fluid mechanics of natural ventilation. J. Fluid Mech, 31, 201-238.
[5] Awbi, H.B. (2003). Ventilation of Buildings, 2nd edition, Spon Press.
[6] Kong, Q. & Yu, B. (2008). Numerical study on temperature stratification in a room with underfloor air distribution system. Energy and Buildings, 40, 495-502.
[7] Zhang Lin, T. T. Chow, C. F. Tsang, K. F. Fong, L. S. Chan. (2005). CFD study on effect of the air supply location on the performance of the displacement ventilation system, Building and Environment, 40, 1051-1067.
[8] Wei-Hwa Chiang, Chia-Ying Wang, Jian-Sheng Huang, Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region, Building and Environment. 2012;48:113-127.
[9] C.K. Lee, H.N. Lam, Computer modeling of displacement ventilation systems based on plume rise in stratified environment, Energy and Buildings. 2007;39:427-436.
[10] Architectural Energy Corporation, Energy Design Resources Design Brief-Displacement ventilation. 2005.
[11] Chen, Q., and L. Glicksman. 2003. System Performance Evaluation and Design Guidelines for Displacement Ventilation. Atlanta: ASHRAE.
[12] Steven J. Emmerich, Tim McDowell, Initial evaluation of displacement ventilation and dedicated outdoor air systems for U.S. commercial buildings, NISTIR 7244. 2005.
[13] 林憲德(2011)。臺灣第一座零碳綠建築-綠色魔法學校。科學發展,460,24-33。
[14] 簡君翰(2009)。無動力太陽能通風塔能源效益解析-以綠色魔法學校國際會議廳為例。國立成功大學,台南。
[15] Room Acoustics, Heinrich Kuttruff, 3rd Edition, Elsevier Applied Science, London & New York, 1991.
[16] D. B. Pedersen, J. Roland, G. Raabe and W. Maysenholder, 2000 Acustica-Acta Acustica 86, 495–505. Measurement of the low-frequency sound insulation of building components.
[17] E. E. Ungar, 1967 Journal of Engineering and Industrial Transactions, American Society of Mechanical Engineers 87, 629–632. Statistical Energy analysis of vibrating systems.
[18] J. A. Steel and R. J. M. Craik 1994 Journal of Sound and Vibration 178, 553–561. Statistical energy analysis of structure-borne sound transmission by Finite Element Methods.
[19] M. A. Jaswon, “Integral equation methods in potential theory. I,” Proc. R. Soc. London A 275, 23–32 (1963).
[20] P. K. Banerjee and R. Butterfield, “Boundary element methods in geomechanics,” in G. Gudehus, ed., Finite Elements in Geomechanics (Wiley, London, 1976), Chap. 16, pp. 529–570.
[21] A. J. Burton and G. F. Miller, “The application of integral equation methods to the numerical solution of some exterior boundary-value problems,” Proc. R. Soc. London Ser. A 323, 201–210 (1971).
[22] Kawai Y, Fukuyama T, Tsuchhiya Y. A chart for estimating the distance attenuation of flanking sound passing through open windows in the exterior wall of adjoining rooms and its experimental verification. Appl Acoust. 2005;65:985–96.
[23] Y. Liu, 2009, Fast Multipole Boundary Element Method, Cambridge University Press.
[24] A. A. Becker, 1992, The Boundary Element Method in Engineering: A Complete Course, McGraw-Hill.
[25] ASHRAE, ASHRAE Handbook-Fundamentals, 2013
[26] W.T. Grondzik, A. G. Kwok, B. Stein, J. S. Reynolds, Mechanical and Electrical Equipment for Buildings,11th edition, John Wiley & Sons, Inc.
[27] S. A. Mumma. 2010, DOAS & Building Pressurization, ASHRAE Journal, pp.42-49
[28] M. Ryan, M. Lanchester and S. Pugh, Noise Reduction through Facades with Open Windows, Proceedings of ACOUSTICS 2011, pp. 37-45.
[29] L. L. Beranek, Criteria for Noise in Office Spaces. Journal of the Acoustical Society of America 1957; 29:765.
[30] L. L. Beranek, Balanced noise-criterion (NCB) curves. Journal of the Acoustical Society of America 1989; 86:650.
[31] L. L. Beranek, 1954, Acoustics, Acoustical Society of America.
[32] M. Schroeder, Die Statistischen Parameter der Frequenzkurve von Großen Raumen, Acustica, 4, 1954, 594- 600. English translation: M.R. Schroeder, Statistical Parameters of the Frequency Response Curves of Large Rooms, Journal of the Audio Engineering Society, 35, 1987
[33] W.C. Sabine, Collected Papers on Acoustics, Harvard University, 1922; Reprinted by Dover Publications, New York, 1964.
[34] S.I. Tanabe, K. Kobayashi, J. Nakano, Y. Ozeki, M. Konishi, Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD), Energy Build. 2002; 34:637-646.
[35] J.D. Posner, C.R. Buchanan, D.D. Rankin, Measurement and prediction of indoor airflow in a model room, Energy Build. 2003; 35:515-526.

QR CODE