簡易檢索 / 詳目顯示

研究生: 陳品彰
Pin-Chang Chen
論文名稱: 基於運算量分配之表面肌電訊號無線身體感測網路的能源管理策略:以疲勞評估研究為例
Power-Management Strategies in sEMG Wireless Body Sensor Networks based on Computation Allocations: A case study for fatigue assessment
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 林淵翔
Yuan-Hsiang Lin
蔡坤霖
Kun-Lin Tsai
白御廷
Yu-Ting Pai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 67
中文關鍵詞: 表面肌電訊號生理訊號處理無線身體感測網路系統功率消耗 評估運算量分配分散式計算疲勞評估乒乓緩衝器
外文關鍵詞: surface ElectroMyoGraphy, biosignal processing, Wireless Body Sensor Networks, system power evaluation, computation allocation, distributed computing, fatigue assessment, ping-pong buffer
相關次數: 點閱:380下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面肌電訊號(sEMG)被廣泛使用於各種應用,管理有電池容量限制的sEMG無線身體感測網路(WBSN)的功率消耗是一個重要的主題,本文以疲勞評估研究為例,並運用分散式計算概念來探討運算量分配對於系統的影響,我們提出了一種基於乒乓緩衝機制的省電方法,並評估了所有影響功率消耗的關鍵因素,綜上所述,我們對所有可能的分散式計算架構進行全面分析以決定最低功率消耗的WBSN架構。經實驗結果表明,與先前的sEMG系統相比,所提出的WBSN架構的平均電流降低了81.7%。並且在配備相同300mAh 鋰電池於連續無線連接下,電池續航力是先前 sEMG 系統的4.48倍。與商用設備相比,電池續航力是商用設備的1.6倍。


    Surface ElectroMyoGraphy (sEMG) is widely applied to a variety of applications. Managing the power consumption of battery-constrained sEMG Wireless Body Sensor Networks (WBSN) is an important topic. In this thesis, we use fatigue assessment as a case study and apply the concept of distributed computing to explore the impact of computation allocations on the WBSN system. We propose a power-saving method based on the ping-pong buffer mechanism and evaluate all the crucial factors which affect power consumption. To sum up, we conduct a comprehensive analysis of all possible distributed computing architectures to determine the lowest-power WBSN architecture. Experimental results showed that the average current of the proposed architecture can be reduced by 81.7% compared with the previous work. Besides, the battery life is 4.48 times that of the previous work under the continuous wireless connection equipped with the same 300mAh lithium battery. Compared with the commercial device, the battery life is 1.6 times that of the commercial device.

    Recommendation Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Committee Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Tables of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview of sEMG application . . . . . . . . . . . . . . . . . . . . 1 1.2 Architecture design of Wireless Body Sensor Network . . . . . . . 2 1.3 Features of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . 6 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 The distributed computing architecture . . . . . . . . . . . . . . . . 7 3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Band-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Hamming window . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 The energetic compensation in Power Spectrum Density . . . . . . 18 4.5 Median Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 Selection of sEMG sample rate . . . . . . . . . . . . . . . . . . . . 22 5.2 The data quantity of each stage in fatigue assessment flow . . . . . 23 5.3 Comparison of Wireless Transmission Technologies . . . . . . . . . 25 5.4 The CPU clock rate minimization method based on ping-pong buffer as memory architecture . . . . . . . . . . . . . . . . . . . . . . . . 26 5.5 Comprehensive analysis in different computation allocations . . . . 30 6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1 MyoWare™ muscle sensor . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3 Power Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    [1] J. Li, T. Zhang, and S. Yan, “Design of multi-channel wireless array wearable surface electromyography testing equipment,” in IOP Conference Series: Materials Science and Engineering, vol. 563, p. 042040, IOP Publishing, 2019.
    [2] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of emg signal analysis: detection, processing, classification and applications,” Biological procedures online, vol. 8, no. 1, pp. 11–35, 2006.
    [3] M. J. Zwarts and D. F. Stegeman, “Multichannel surface emg: basic aspects and clinical utility,” Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, vol. 28, no. 1, pp. 1–17, 2003.
    [4] Y. Wu, M. Á. M. Martínez, and P. O. Balaguer, “Overview of the application of emg recording in the diagnosis and approach of neurological disorders,” in Electrodiagnosis in New Frontiers of Clinical Research, pp. 1–24, IntechOpen, 2013.
    [5] I.Wijnberg,W. Back, M. De Jong, M. Zuidhof, A. Van Den Belt, and J. Van der Kolk, “The role of electromyography in clinical diagnosis of neuromuscular
    44locomotor problems in the horse,” Equine veterinary journal, vol. 36, no. 8, pp. 718–722, 2004.
    [6] N. Parajuli, N. Sreenivasan, P. Bifulco, M. Cesarelli, S. Savino, V. Niola, D. Esposito, T. J. Hamilton, G. R. Naik, U. Gunawardana, et al., “Real-time emg based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation,” Sensors, vol. 19, no. 20, p. 4596, 2019.
    [7] R. Subbu, R.Weiler, and G. Whyte, “The practical use of surface electromyography during running: does the evidence support the hype? a narrative review,” BMJopen sport & exercise medicine, vol. 1, no. 1, 2015.
    [8] A. Goswami, A. Sadhukhan, and S. Gupta, “Emg characteristics and fibre composition: study on rectus femoris of sprinters and long distance runners.,” Indian journal of physiology and pharmacology, vol. 45, no. 4, pp. 497–501, 2001.
    [9] H.-S. Choi, “Emg sensor system for neck fatigue assessment using rf wireless power transmission,” in 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA), pp. 219–222, IEEE, 2018.
    45[10] H. Kim, J. Lee, and J. Kim, “Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems,” Biomedical engineering letters, vol. 8, no. 4, pp. 345–353, 2018.
    [11] A. Sangwan and P. P. Bhattacharya, “Wireless body sensor networks: a review,” International Journal of Hybrid Information Technology, vol. 8, no. 9, pp. 105–120, 2015.
    [12] L. Pan, L. Bic, M. Dillencourt, and M. K. Lai, “Distributed sequential computing,” Advances in Computation: Theory and Practice, vol. 16, 2004.
    [13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.
    [14] H. Attiya and J. Welch, Distributed computing: fundamentals, simulations, and advanced topics, vol. 19. John Wiley & Sons, 2004.
    [15] P.-Y. R. Ma et al., “A task allocation model for distributed computing systems,”IEEE Transactions on Computers, vol. 100, no. 1, pp. 41–47, 1982.
    [16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16, 2012.
    46[17] K.-M. Chang, S.-H. Liu, and X.-H. Wu, “A wireless semg recording system and its application to muscle fatigue detection,” Sensors, vol. 12, no. 1, pp. 489–499, 2012.
    [18] J. Liu, F. Zhang, and H. H. Huang, “An open and configurable embedded system for emg pattern recognition implementation for artificial arms,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4095–4098, IEEE, 2014.
    [19] B.-S. Chung, H.-K. Kim, K.-I. Cho, H.-J. Kim, and G.-C. Ahn, “Analog front-end for emg acquisition system,” in 2017 International SoC Design Conference (ISOCC), pp. 57–58, IEEE, 2017.
    [20] S. Örücü and M. Selek, “Design and validation of multichannel wireless wearable semg system for real-time training performance monitoring,” Journal of healthcare engineering, vol. 2019, 2019.
    [21] W. Youn and J. Kim, “Development of a compact-size and wireless surface emg measurement system,” in 2009 Iccas-Sice, pp. 1625–1628, IEEE, 2009.
    [22] D. Brunelli, A. M. Tadesse, B. Vodermayer, M. Nowak, and C. Castellini,“Low-cost wearable multichannel surface emg acquisition for prosthetic hand control,” in 2015 6th international workshop on advances in sensors and interfaces (IWASI), pp. 94–99, IEEE, 2015.
    [23] M. S. Mabrouk and O. A. Kandil, “Surface multi-purposes low power wireless electromyography (emg) system design,” International Journal of Computer Applications, vol. 41, no. 12, 2012.
    [24] S. Jaafer and N. Hussein, “Important features of emg signal under simple load conditions,” Journal of Polytechnic, vol. 7, p. 1, 01 2017.
    [25] J. Too, A. R. Abdullah, N. Mohd Saad, andW. Tee, “Emg feature selection and classification using a pbest-guide binary particle swarm optimization,” Computation, vol. 7, no. 1, p. 12, 2019.
    [26] C. J. De Luca, L. D. Gilmore, M. Kuznetsov, and S. H. Roy, “Filtering the surface emg signal: Movement artifact and baseline noise contamination,” Journal of biomechanics, vol. 43, no. 8, pp. 1573–1579, 2010.
    [27] B. S. Oken, “Filtering and aliasing of muscle activity in eeg frequency analysis,” Electroencephalography and clinical Neurophysiology, vol. 64, no. 1, pp. 77–80, 1986.
    [28] M. Wu, D. Chen, and G. Chen, “New spectral leakage-removing method for spectral testing of approximate sinusoidal signals,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1296–1306, 2012.
    [29] N. Amrutha and V. Arul, “A review on noises in emg signal and its removal,” Int. J. Sci. Res. Publ, vol. 7, no. 5, pp. 23–27, 2017.
    [30] S. Millers and D. Childers, “Probability and random processes,” Academic Press, p. 373, 2012.
    [31] M. Cifrek, V. Medved, S. Tonković, and S. Ostojić, “Surface emg based muscle fatigue evaluation in biomechanics,” Clinical biomechanics, vol. 24, no. 4, pp. 327–340, 2009.
    [32] C. J. De Luca, “The use of surface electromyography in biomechanics,” Journal of applied biomechanics, vol. 13, no. 2, pp. 135–163, 1997.
    [33] J. C. Ives and J. K.Wigglesworth, “Sampling rate effects on surface emg timing and amplitude measures,” Clinical biomechanics, vol. 18, no. 6, pp. 543–552, 2003.
    [34] E. A. Clancy, E. L. Morin, and R. Merletti, “Sampling, noise-reduction and amplitude estimation issues in surface electromyography,” Journal of electromyography and kinesiology, vol. 12, no. 1, pp. 1–16, 2002.
    [35] G. Li, Y. Li, Z. Zhang, Y. Geng, and R. Zhou, “Selection of sampling rate for emg pattern recognition based prosthesis control,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 5058–5061, IEEE, 2010.
    [36] “Esp8266ex datasheet.” https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf. Accessed April 19, 2020.
    [37] “Hc-08 datasheet.” https://shop.ideaelec.com/wp-content/uploads/2018/05/HC-08A-datasheet-www.ideaelec.com_.pdf. Accessed April 5, 2020.
    [38] E. Intel, “Speedstep® technology for the intel® pentium®mprocessor,” White Paper, Intel, 2004.
    [39] J. N. Dieffenderfer and R. N. Kalla, “Ping-pong data buffer for transferring data from one data bus to another data bus,” 06 1993. US Patent 5,224,213.
    [40] Y.-M. Joo and N. McKeown, “Doubling memory bandwidth for network buffers,” in Proceedings. IEEE INFOCOM’98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No. 98, vol. 2, pp. 808–815, IEEE, 1998.
    [41] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accelerator design for deep convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161–170, 2015.
    [42] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
    [43] L. A. Cortés, P. Eles, and Z. Peng, “A petri net based model for heterogeneous embedded systems,” in Proc. NORCHIP Conference, pp. 248–255, 1999.
    [44] L. Benders and M. Stevens, “Petri net modelling in embedded system design,” in 1992 Proceedings Computer Systems and Software Engineering, pp. 612–613, IEEE Computer Society, 1992.
    [45] L. A. Cortés, P. Eles, and Z. Peng, “Verification of embedded systems using a petri net based representation,” in Proceedings 13th International Symposium on System Synthesis, pp. 149–155, IEEE, 2000.
    51[46] N. Nazmi, M. A. Abdul Rahman, S.-I. Yamamoto, S. A. Ahmad, H. Zamzuri, and S. A. Mazlan, “A review of classification techniques of emg signals during isotonic and isometric contractions,” Sensors, vol. 16, no. 8, p. 1304, 2016.
    [47] “3-lead muscle/ electromyography sensor for microcontroller applications.” https://cdn.sparkfun.com/datasheets/Sensors/Biometric/MyowareUserManualAT-04-001.pdf. Accessed April 23, 2020.
    [48] Y.-H. Yang, S.-J. Ruan, P.-C. Chen, Y.-T. Liu, and Y.-H. Hsueh, “A low-cost
    wireless multichannel surface emg acquisition system,” IEEE Consumer Electronics Magazine, vol. 9, no. 5, pp. 14–19, 2020.
    [49] “Stm32h743 reference manual.” https://www.st.com/resource/en/reference_manual/dm00314099-stm32h742-stm32h743-753-and-stm32h750-value-line-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf. Accessed April 27,2020.
    [50] “Tlv75733pdbvr datasheet.” https://www.ti.com/lit/ds/symlink/tlv757p.pdf. Accessed March 16, 2020.
    [51] “Eup8054 datasheet.” https://datasheetspdf.com/pdf-file/615183/EutechMicroelectronics/EUP8054/1. Accessed March 2, 2020.
    [52] “Trignotm wireless biofeedback system user’s guide.” https://www.delsys.com/downloads/USERSGUIDE/trigno/ wireless-biofeedback-system.pdf. Accessed April 2, 2020.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE